1. | Razi SM, Fahim H, Amirabadi S et al. An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll, 2023;135. |
2. | Hu G, Zhang J, Wang Q et al. Succinylation modified ovalbumin: structural, interfacial, and functional properties. Foods. 2022;11(18). |
3. | Guirimand G, Kulagina N, Papon N, et al.. Innovative tools and strategies for optimizing yeast cell factories. Trend Biotech, 2021, 39(5): 488-504, |
4. | Huang M, Bai Y, Sjostrom SL, et al.. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Nat Acad Sci USA, 2015, 112(34): E4689-96, pmcid: 4553813 |
5. | Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbio Mol Bio Rev, 2008, 72(3): 379-412, |
6. | Turanl?-Y?ld?z B, Hac?saliho?lu B, ?akar ZP. Advances in metabolic engineering of Saccharomyces cerevisiae for the production of industrially and clinically important chemicals. Old Yeast New Quest; 2017. |
7. | Deng J, Wu Y, Zheng Z et al. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae. Microb Cell Fact. 2021;20(1). |
8. | Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbio Biotech. 2019;35(2). |
9. | Tang H, Bao X, Shen Y, et al.. Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae. Biotech Bioengg, 2015, 112(9): 1872-82, |
10. | Xu L, Liu P, Dai Z et al. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microb Cell Fact. 2021;20(1). |
11. | Gao S, Zhou H, Zhou J, et al.. Promoter-library-based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae. J Agricult Food Chem, 2020, 68(25): 6884-91, |
12. | Zuo JR, Niu QW, Moller SG, et al.. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotech, 2001, 19(2): 157-61, |
13. | Bindels DS, Haarbosch L, Van Weeren L, et al.. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Meth, 2017, 14(1): 53-6, |
14. | Shaner NC, Lin MZ, Mckeown MR, et al.. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Meth, 2008, 5(6): 545-51, |
15. | Sugiyama M, Sakaue-Sawano A, Iimura T, et al.. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Nat Acad Sci USA, 2009, 106(49): 20812-7, pmcid: 2779202 |
16. | Gookin TE, Assmann SM. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plan J, 2014, 80(3): 553-67, |
17. | Sun J, Lei L, Tsai CM et al. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat Commu. 2017;8. |
18. | Gietz R, Schiestl R. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2: 38-41, |
19. | Gietz R, Schiestl R. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Prot. 2007;2: 35?–?7. |
20. | Gietz R, Schiestl R. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2: 1-4, |
21. | Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2(1): 31-4, |
22. | Tang H, Wu Y, Deng J et al. Promoter architecture and promoter engineering in Saccharomyces cerevisiae. Metabol. 2020;10(8). |
23. | Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters. Nat Commu. 2015;6. |
24. | Keren L, Zackay O, Lotan-Pompan M et al. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Bio. 2013;9. |
25. | Gnugge R, Rudolf F. Saccharomyces cerevisiae shuttle vectors. Yeast, 2017, 34(5): 205-21, |
26. | Apel AR, D’espaux L, Wehrs M, et al.. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucl Acid Res, 2017, 45(1): 496-508, |
27. | Lubliner S, Regev I, Lotan-Pompan M, et al.. Core promoter sequence in yeast is a major determinant of expression level. Gen Res, 2015, 25(7): 1008-17, |
28. | Teixeira MC, Monteiro PT, Palma M, et al.. YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucl Acid Res, 2018, 46(D1): D348-53, |
29. | Teixeira MC, Monteiro P, Jain P, et al.. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl Acid Res, 2006, 34: D446-51, |
30. | Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinfo, 1999, 15(7–8): 607-11 |
31. | Li S, Ma L, Fu W, et al.. Programmable synthetic upstream activating sequence library for fine-tuning gene expression levels in Saccharomyces cerevisiae. ACS Synt Bio, 2022, 11(3): 1228-39, |
32. | Bitter GA, Chang KKH, Egan KM. A multicomponent upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol Gener Gen, 1991, 231(1): 22-32, |
33. | Blazeck J, Garg R, Reed B, et al.. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotech Bioengg, 2012, 109(11): 2884-95, |
34. | Stewart AJ, Plotkin JB. Why transcription factor binding sites are ten nucleotides long. Genet, 2012, 192(3): 973, |
35. | Dobi KC, Winston F. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cel Bio, 2007, 27(15): 5575-86, |
36. | Giniger E, Varnum SM, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell, 1985, 40(4): 767-74, |
37. | Escalante-Chong R, Savir Y, Carroll SM, et al.. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Nat Acad Sci USA, 2015, 112(5): 1636-41, pmcid: 4321281 |