Construction of short synthetic promoters for optimization of ovalbumin expression level in Saccharomyces cerevisiae

Ying Lin1,2,3,4,6, Xiaomin Dong1,2,3,4, Xueqin Lv1,2,3,4, Long Liu1,2,3,4, Jianghua Li1,2,3,4,6, Guocheng Du1,2,3,4,6, Jian Chen2,3,4,5,6, Yanfeng Liu1,2,3,4,5,6,h()

Systems Microbiology and Biomanufacturing ›› 2024, Vol. 4 ›› Issue (3) : 996-1005. DOI: 10.1007/s43393-024-00250-2
Original Article

Construction of short synthetic promoters for optimization of ovalbumin expression level in Saccharomyces cerevisiae

  • Ying Lin1,2,3,4,6, Xiaomin Dong1,2,3,4, Xueqin Lv1,2,3,4, Long Liu1,2,3,4, Jianghua Li1,2,3,4,6, Guocheng Du1,2,3,4,6, Jian Chen2,3,4,5,6, Yanfeng Liu1,2,3,4,5,6,h()
Author information +
History +

Abstract

Highlights

Fluorescent protein optimized for promoter fluorescence intensity in S. cerevisiae.

Short promoter library with different strengths and stable expression constructed.

These promoters express ovalbumin fusion fluorescent proteins in S. cerevisiae.

Keywords

Saccharomyces cerevisiae / Promoter engineering / Synthetic promoters / Ovalbumin

Cite this article

Download citation ▾
Ying Lin, Xiaomin Dong, Xueqin Lv, Long Liu, Jianghua Li, Guocheng Du, Jian Chen, Yanfeng Liu. Construction of short synthetic promoters for optimization of ovalbumin expression level in Saccharomyces cerevisiae. Systems Microbiology and Biomanufacturing, 2024, 4(3): 996‒1005 https://doi.org/10.1007/s43393-024-00250-2

References

1.
Razi SM, Fahim H, Amirabadi S et al. An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll, 2023;135.
2.
Hu G, Zhang J, Wang Q et al. Succinylation modified ovalbumin: structural, interfacial, and functional properties. Foods. 2022;11(18).
3.
Guirimand G, Kulagina N, Papon N, et al.. Innovative tools and strategies for optimizing yeast cell factories. Trend Biotech, 2021, 39(5): 488-504,
4.
Huang M, Bai Y, Sjostrom SL, et al.. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Nat Acad Sci USA, 2015, 112(34): E4689-96, pmcid: 4553813
5.
Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbio Mol Bio Rev, 2008, 72(3): 379-412,
6.
Turanl?-Y?ld?z B, Hac?saliho?lu B, ?akar ZP. Advances in metabolic engineering of Saccharomyces cerevisiae for the production of industrially and clinically important chemicals. Old Yeast New Quest; 2017.
7.
Deng J, Wu Y, Zheng Z et al. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae. Microb Cell Fact. 2021;20(1).
8.
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbio Biotech. 2019;35(2).
9.
Tang H, Bao X, Shen Y, et al.. Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae. Biotech Bioengg, 2015, 112(9): 1872-82,
10.
Xu L, Liu P, Dai Z et al. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microb Cell Fact. 2021;20(1).
11.
Gao S, Zhou H, Zhou J, et al.. Promoter-library-based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae. J Agricult Food Chem, 2020, 68(25): 6884-91,
12.
Zuo JR, Niu QW, Moller SG, et al.. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotech, 2001, 19(2): 157-61,
13.
Bindels DS, Haarbosch L, Van Weeren L, et al.. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat Meth, 2017, 14(1): 53-6,
14.
Shaner NC, Lin MZ, Mckeown MR, et al.. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Meth, 2008, 5(6): 545-51,
15.
Sugiyama M, Sakaue-Sawano A, Iimura T, et al.. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Nat Acad Sci USA, 2009, 106(49): 20812-7, pmcid: 2779202
16.
Gookin TE, Assmann SM. Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plan J, 2014, 80(3): 553-67,
17.
Sun J, Lei L, Tsai CM et al. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Nat Commu. 2017;8.
18.
Gietz R, Schiestl R. Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2: 38-41,
19.
Gietz R, Schiestl R. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nat Prot. 2007;2: 35?–?7.
20.
Gietz R, Schiestl R. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2: 1-4,
21.
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Prot, 2007, 2(1): 31-4,
22.
Tang H, Wu Y, Deng J et al. Promoter architecture and promoter engineering in Saccharomyces cerevisiae. Metabol. 2020;10(8).
23.
Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters. Nat Commu. 2015;6.
24.
Keren L, Zackay O, Lotan-Pompan M et al. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Bio. 2013;9.
25.
Gnugge R, Rudolf F. Saccharomyces cerevisiae shuttle vectors. Yeast, 2017, 34(5): 205-21,
26.
Apel AR, D’espaux L, Wehrs M, et al.. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucl Acid Res, 2017, 45(1): 496-508,
27.
Lubliner S, Regev I, Lotan-Pompan M, et al.. Core promoter sequence in yeast is a major determinant of expression level. Gen Res, 2015, 25(7): 1008-17,
28.
Teixeira MC, Monteiro PT, Palma M, et al.. YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucl Acid Res, 2018, 46(D1): D348-53,
29.
Teixeira MC, Monteiro P, Jain P, et al.. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl Acid Res, 2006, 34: D446-51,
30.
Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinfo, 1999, 15(7–8): 607-11
31.
Li S, Ma L, Fu W, et al.. Programmable synthetic upstream activating sequence library for fine-tuning gene expression levels in Saccharomyces cerevisiae. ACS Synt Bio, 2022, 11(3): 1228-39,
32.
Bitter GA, Chang KKH, Egan KM. A multicomponent upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol Gener Gen, 1991, 231(1): 22-32,
33.
Blazeck J, Garg R, Reed B, et al.. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotech Bioengg, 2012, 109(11): 2884-95,
34.
Stewart AJ, Plotkin JB. Why transcription factor binding sites are ten nucleotides long. Genet, 2012, 192(3): 973,
35.
Dobi KC, Winston F. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cel Bio, 2007, 27(15): 5575-86,
36.
Giniger E, Varnum SM, Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell, 1985, 40(4): 767-74,
37.
Escalante-Chong R, Savir Y, Carroll SM, et al.. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc Nat Acad Sci USA, 2015, 112(5): 1636-41, pmcid: 4321281
Funding
National Key Research and Development Program of China(2020YFA0908300); National Natural Science Foundation of China(32222069); Foundation for Innovative Research Groups of the National Natural Science Foundation of China(32021005)

Accesses

Citations

Detail

Sections
Recommended

/