Development of high-performance nitrile hydratase whole-cell catalyst by automated structure- and sequence-based design and mechanism insights

Meng Li1, Dong Ma1, Jun Qiao3, Zhongyi Cheng1, Qiong Wang1, Zhemin Zhou1,2,f, Laichuang Han1,g()

Systems Microbiology and Biomanufacturing ›› 2024, Vol. 4 ›› Issue (3) : 882-894. DOI: 10.1007/s43393-024-00239-x
Original Article

Development of high-performance nitrile hydratase whole-cell catalyst by automated structure- and sequence-based design and mechanism insights

  • Meng Li1, Dong Ma1, Jun Qiao3, Zhongyi Cheng1, Qiong Wang1, Zhemin Zhou1,2,f, Laichuang Han1,g()
Author information +
History +

Abstract

Nitrile hydratase (NHase) is a metalloenzyme that catalyzes the conversion of nitrile to amide and is widely used in the biocatalysis of bulk chemicals such as acrylamide and nicotinamide. Improving the thermostability, activity, and soluble expression of natural NHase is crucial for its industrial application. However, conventional engineering strategies are often based on the design and evaluation of single-point mutations, followed by multiple rounds of iterative combinations, which are inefficient and difficult to predict the evolutionary direction of the combinatorial mutations due to epistatic effects. In this study, we used PROSS, an automated design tool based on structural and sequence information, to design a thermophilic NHase from Pseudonocardia thermophila JCM3095 (PtNHase). By sequentially applying subunit-independent mutations, subunit-synergistic mutations, and single-point revertant mutations, we obtained the superior mutant A2B1–β221. This mutant exhibited 1.4-fold and 2.3-fold higher activity towards acrylonitrile and 3-cyanopyridine, respectively, compared to the wild type. Additionally, A2B1–β221 showed a significant enhancement in thermostability. Moreover, benefiting from the enhanced soluble expression, a high-performance whole-cell catalyst for NHase was obtained. Furthermore, conventional molecular dynamics simulations and metadynamics simulations were employed to resolve the molecular mechanisms underlying the high activity and thermostability of A2B1–β221. This study not only provided highly efficient whole-cell catalyst for NHase, but also demonstrated the efficacy of utilizing automated design tools and molecular dynamics simulations in the engineering of heterologous multimeric proteins, offering valuable insights into their applicability.

Keywords

Nitrile hydratase / Whole-cell catalyst / Protein design / Soluble expression / Metadynamics simulation

Cite this article

Download citation ▾
Meng Li, Dong Ma, Jun Qiao, Zhongyi Cheng, Qiong Wang, Zhemin Zhou, Laichuang Han. Development of high-performance nitrile hydratase whole-cell catalyst by automated structure- and sequence-based design and mechanism insights. Systems Microbiology and Biomanufacturing, 2024, 4(3): 882‒894 https://doi.org/10.1007/s43393-024-00239-x

References

1.
Cheng ZY, Xia YY, Zhou ZM. Recent advances and promises in nitrile hydratase: from mechanism to industrial applications. Front Bioeng Biotechnol, 2020, 8: 352, pmcid: 7193024
2.
Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol. 2018;185: 925–946. https://doi.org/10.1007/s12010-018-2705-7.
3.
Foerstner KU, Doerks T, Muller J, Raes J, Bork P. A nitrile hydratase in the eukaryote Monosiga brevicollis. Plos One, 2008, 3, pmcid: 2603476
4.
Guo JL, Cheng ZY, Zhou ZM. An archaeal nitrile hydratase from the halophilic archaeon A07HB70 exhibits high tolerance to 3-cyanopyridine and nicotinamide. Protein Expression and Purification, 2024, 214,
5.
Martinez S, Yang XH, Bennett B, Holz RC. A cobalt-containing eukaryotic nitrile hydratase. Biochim Biophys Acta-Proteins Proteomics, 1865, 1865: 107-112,
6.
Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, Zhang Y, Collier JL, Wurch LL, Kustka AB, Dill BD, Shah M, VerBerkmoes NC, Kuo A, Terry A, Pangilinan J, Lindquist EA, Lucas S, Paulsen IT, Hattenrath-Lehmann TK, Talmage SC, Walker EA, Koch F, Burson AM, Marcoval MA, Tang YZ, LeCleir GR, Coyne KJ, Berg GM, Bertrand EM, Saito MA, Gladyshev VN, Grigoriev IV. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA, 2011, 108: 4352-4357, pmcid: 3060233
7.
Supreetha K, Rao SN, Srividya D, Anil HS, Kiran S. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol Biol Rep, 2019, 46: 4661-4673,
8.
Marron AO, Akam M, Walker G. Nitrile hydratase genes are present in multiple eukaryotic supergroups. Plos One, 2012, 7,
9.
Xia YY, Cui WJ, Liu ZM, Zhou L, Cui YT, Kobayashi M, Zhou ZM. Construction of a subunit-fusion nitrile hydratase and discovery of an innovative metal ion transfer pattern. Sci Rep, 2016, 6: 19183, pmcid: 4709657
10.
Hopmann KH, Himo F. Theoretical investigation of the second-shell mechanism of nitrile hydratase. Eur J Inorg Chem. 2008;1406–1412. https://doi.org/10.1002/ejic.200701137.
11.
Zhou Z, Hashimoto Y, Shiraki K, Kobayashi M. Discovery of posttranslational maturation by self-subunit swapping. Proc Natl Acad Sci USA, 2008, 105: 14849-14854, pmcid: 2567456
12.
Xia YY, Cheng ZY, Hou C, Peplowski L, Zhou ZM, Chen XZ. Discovery of the ATPase activity of a cobalt-type nitrile hydratase activator and its promoting effect on enzyme maturation. Biochemistry, 2022, 61: 2940-2947,
13.
Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited. Green Chem, 2018, 20: 5082-5103,
14.
Gong JS, Shi JS, Lu ZM, Li H, Zhou ZM, Xu ZH. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises. Crit Rev Biotechnol, 2017, 37: 69-81,
15.
Kobayashi M, Shimizu S. Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol, 1998, 16: 733-736,
16.
Yamada H, Kobayashi M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem, 1996, 60: 1391-1400,
17.
Jiao S, Li FL, Yu HM, Shen ZY. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl Microbiol Biotechnol, 2020, 104: 1001-1012,
18.
Wang Z, Liu ZM, Cui WJ, Zhou ZM. Establishment of bioprocess for synthesis of nicotinamide by recombinant Escherichia coli expressing high-molecular-mass nitrile hydratase. Appl Biochem Biotechnol, 2017, 182: 1458-1466,
19.
Han LC, Cui WJ, Lin Q, Chen QQ, Suo FY, Ma K, Wang Y, Hao WL, Cheng ZY, Zhou ZM. Efficient overproduction of active nitrile hydratase by coupling expression induction and enzyme maturation via programming a controllable cobalt-responsive gene circuit. Front Bioeng Biotechnol, 2020, 8: 00193,
20.
Liu Y, Cui WJ, Liu ZM, Cui YT, Xia YY, Kobayashi M, Zhou ZM. Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng, 2014, 118: 249-252,
21.
Cui YT, Cui WJ, Liu ZM, Zhou L, Kobayashi M, Zhou ZM. Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun, 2014, 450: 401-408,
22.
Chen J, Yu HM, Liu CC, Liu J, Shen ZY. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol, 2013, 164: 354-362,
23.
Cheng ZY, Peplowski L, Cui WJ, Xia YY, Liu ZM, Zhang JL, Kobayashi M, Zhou ZM. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Biotechnol Bioeng, 2018, 115: 524-535,
24.
Ma D, Cheng ZY, Peplowski L, Han LC, Xia YY, Hou XD, Guo JL, Yin DJ, Rao YJ, Zhou ZM. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci, 2022, 13: 8417-8428, pmcid: 9297474
25.
Guerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol, 2002, 320: 369-387,
26.
Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, Baker D, DiMaio F. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J Chem Theory Comput, 2016, 12: 6201-6212, pmcid: 5515585
27.
Li B, Yang YCT, Capra JA, Gerstein MB. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks. PloS Comput Biol, 2020, 16: 1008291,
28.
Wang SY, Tang HZ, Zhao YL, Zuo L. BayeStab: predicting effects of mutations on protein stability with uncertainty quantification. Protein Sci, 2022, 31, pmcid: 9601791
29.
Goldenzweig A, Goldsmith M, Hill SE, Gertman O, Laurino P, Ashani Y, Dym O, Unger T, Albeck S, Prilusky J, Lieberman RL, Aharoni A, Silman I, Sussman JL, Tawfik DS, Fleishman SJ. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell, 2016, 63: 337-346, pmcid: 4961223
30.
Altschul SF, Gertz EM, Agarwala R, Sch?ffer AA, Yu YK. PSI-BLAST pseudocounts and the minimum description length principle. Nucleic Acids Res, 2009, 37: 815-824,
31.
Yamaki T, Oikawa T, Ito K, Nakamura T. Cloning and sequencing of a nitrile hydratase gene from Pseudonocardia thermophila JCM3095. J Ferment Bioeng, 1997, 83: 474-477,
32.
Miyanaga A, Fushinobu S, Ito K, Wakagi T. Crystal structure of cobalt-containing nitrile hydratase. Biochem Biophys Res Commun, 2001, 288: 1169-1174,
33.
Han LC, Liu XY, Cheng ZY, Cui WJ, Guo JL, Yin J, Zhou ZM. Construction and application of a high-throughput in vivo screening platform for the evolution of nitrile metabolism-related enzymes based on a desensitized repressive biosensor. ACS Synth Biol, 2022, 11: 1577-1587,
34.
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6: 343-U341,
35.
Cheng ZY, Jiang SJ, Zhou ZM. Substrate access tunnel engineering for improving the catalytic activity of a thermophilic nitrile hydratase toward pyridine and pyrazine nitriles. Biochem Biophys Res Commun, 2021, 575: 8-13,
36.
Alford RF, Leaver-Fay A, Jeliazkov JR, O'Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL, Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput, 2017, 13: 3031-3048, pmcid: 5717763
37.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583, pmcid: 8371605
38.
Liu J, Guo Z, Wu T, Roy RS, Quadir F, Chen C, Cheng J. Enhancing alphafold-multimer-based protein complex structure prediction with MULTICOM in CASP15. Commun Biol, 2023, 6: 1140, pmcid: 10638423
39.
Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J Chem Theory Comput, 2012, 8: 3257-3273, pmcid: 3549273
40.
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kale LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys, 2020, 153,
41.
Peplowski L, Kubiak K, Nowak W. Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chem Phys Lett, 2008, 467: 144-149,
42.
Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model, 2012, 52: 3155-3168, pmcid: 3528813
43.
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model, 1996, 14: 33-38,
44.
Grant BJ, Skj?rven L, Yao XQ. The Bio3D packages for structural bioinformatics. Protein Sci, 2021, 30: 20-30,
45.
Sora V, Laspiur AO, Degn K, Arnaudi M, Utichi M, Beltrame L, De Menezes D, Orlandi M, Stoltze UK, Rigina O, Sackett PW, Wadt K, Schmiegelow K, Tiberti M, Papaleo E. RosettaDDGPrediction for high-throughput mutational scans: from stability to binding. Protein Sci, 2023, 32, pmcid: 9795540
46.
Heinemann PM, Armbruster D, Hauer B. Active-site loop variations adjust activity and selectivity of the cumene dioxygenase. Nat Commun, 2021, 12: 1095, pmcid: 7889853
47.
Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SCL. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. J Am Chem Soc, 2021, 143: 3830-3845, pmcid: 8031367
48.
Liu YF, Xu GC, Zhou JY, Ni J, Zhang L, Hou XD, Yin DJ, Rao YJ, Zhao YL, Ni Y. Structure-guided engineering of d-Carbamoylase reveals a key loop at substrate entrance tunnel. ACS Catal, 2020, 10: 12393-12402,
49.
Zhou ZF, Ma D, Cheng ZY. Engineering of the thermophilic nitrile hydratase from Pseudonocardia thermophila JCM3095 for large-scale nicotinamide production based on sequence-activity relationships. Int J Biol Macromol, 2021, 191: 775-782,
50.
Callea L, Bonati L, Motta S. Metadynamics-based approaches for modeling the hypoxia-inducible factor 2α ligand binding process. J Chem Theory Comput, 2021, 17: 3841-3851, pmcid: 8280741
51.
Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA, 2002, 99: 12562-12566, pmcid: 130499
52.
Raniolo S, Limongelli V. Ligand binding free-energy calculations with funnel metadynamics. Nat Protoc, 2020, 15: 2837-2866,
53.
Hopmann KH. Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem, 2014, 53: 2760-2762,
54.
Cui YL, Chen YC, Liu XY, Dong SJ, Tian YE, Qiao YX, Mitra R, Han J, Li CL, Han X, Liu WD, Chen Q, Wei WQ, Wang X, Du WB, Tang SY, Xiang H, Liu HY, Liang Y, Houk KN, Wu B. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal, 2021, 11: 1340-1350,
55.
Meijing W, Xin G, Wei Z, Chao L, Fuping L, Lijun G, Weidong L, Jianwen W, Fenghua W, Hui-Min Q. Enhanced thermostability of an l-Rhamnose isomerase for d-allose synthesis by computation-based rational redesign of flexible regions. J Agric Food Chem, 2023, 71: 15713-15722,
56.
Yu HR, Dalby PA. Coupled molecular dynamics mediate long- and short-range epistasis between mutations that affect stability and aggregation kinetics. Proc Natl Acad Sci USA, 2018, 115: E11043-E11052, pmcid: 6255212
57.
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein design: from the aspect of water solubility and stability. Chem Rev, 2022, 122: 14085-14179, pmcid: 9523718
58.
Zhong C, Wei P, Zhang YHP. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons. Biotechnol Bioeng, 2017, 114: 1054-1064,
59.
Xie X, Wu P, Huang XC, Bai WF, Li BW, Shi N. Retro-protein XXA is a remarkable solubilizing fusion tag for inclusion bodies. Microb Cell Fact, 2022, 21: 51, pmcid: 8977028
60.
Hon J, Marusiak M, Martinek T, Kunka A, Zendulka J, Bednar D, Damborsky J. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics, 2021, 37: 23-28, pmcid: 8034534
61.
Song W, Xu X, Gao C, Zhang YX, Wu J, Liu J, Chen XL, Luo QL, Liu LM. Open gate of Corynebacterium glutamicum threonine deaminase for efficient synthesis of bulky α-keto acids. ACS Catal, 2020, 10: 9994-10004,
62.
Wu T, Wang YM, Zhang NX, Yin DJ, Xu Y, Nie Y, Mu XQ. Reshaping substrate-binding pocket of leucine dehydrogenase for bidirectionally accessing structurally diverse substrates. ACS Catal, 2023, 13: 158-168,
63.
Gu J, Xu Y, Nie Y. Role of distal sites in enzyme engineering. Biotechnol Adv, 2023, 63,
Funding
National Natural Science Foundation of China(32271301); China Innovation Challenge (NingBo) Major Project(2023T020); Natural Science Foundation of Jiangsu(BK20210470)

Accesses

Citations

Detail

Sections
Recommended

/