1. | Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, et al.. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun, 2020, 11: 3120, pmcid: 7305114 |
2. | Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, et al.. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol, 2023, 253, |
3. | Hu S, Zhao L, Hu L, Xi X, Zhang Y, Wang Y, et al.. Engineering the probiotic bacterium Escherichia coli Nissle 1917 as an efficient cell factory for heparosan biosynthesis. Enzyme Microb Technol, 2022, 158, |
4. | Chen L, Qin Y, Ma L, Meng D, You C. Biosynthesis of Lacto-N-biose I from starch and N-acetylglucosamine via an in vitro synthetic enzymatic biosystem. Synth Syst Biotechnol, 2023, 8: 555-562, pmcid: 10468323 |
5. | Lu P, Liu Y, He M, Cao T, Yang M, Qi S, et al.. Cryo-EM structure of human O-GlcNAcylation enzyme pair OGT-OGA complex. Nat Commun, 2023, 14: 6952, pmcid: 10618255 |
6. | Karki R, Hennek JT, Chen W, Frantom PA. HDX-MS reveals substrate-dependent, localized EX1 conformational dynamics in the retaining GT-B glycosyltransferase, MshA. Biochemistry, 2023, 62: 2645-2657, |
7. | Xuan L, Zhang J, Lu W, Gluza P, Ebert B, Kotake T, et al.. A pipeline towards the biochemical characterization of the Arabidopsis GT14 Family. Int J Mol Sci, 2021, 22: 1360, pmcid: 7866395 |
8. | Qin X, Shi J, Li X, Lu M, Zhu Y, Yang Q, et al.. Optimizing the binding of OGT and a peptidic substrate towards pseudo-substrate inhibitors via molecular dynamic simulations. Syst Microbiol Biomanuf, 2023, |
9. | Rejzek M, Hill L, Hems ES, Kuhaudomlarp S, Wagstaff BA, Field RA. Profiling of sugar nucleotides. Methods Enzymol, 2017, 597: 209-238, |
10. | Ruffing A, Mao Z, Ruizhen Chen R. Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. Metab Eng, 2006, 8: 465-473, |
11. | Mandawe J, Infanzon B, Eisele A, Zaun H, Kuballa J, Davari MD, et al.. Directed evolution of hyaluronic acid synthase from Pasteurella multocida towards high-molecular-weight hyaluronic acid. Chem Bio Chem, 2018, 19: 1414-1423, |
12. | Ying H, Chen X, Cao H, Xiong J, Hong Y, Bai J, et al.. Enhanced uridine diphosphate N-acetylglucosamine production using whole-cell catalysis. Appl Microbiol Biotechnol, 2009, 84: 677-683, |
13. | Meng DH, Du RR, Chen LZ, Li MT, Liu F, Hou J, et al.. Cascade synthesis of uridine-5'-diphosphate glucuronic acid by coupling multiple whole cells expressing hyperthermophilic enzymes. Microb Cell Fact, 2019, 18: 118, pmcid: 6604206 |
14. | Gauttam R, Desiderato CK, Rado? D, Link H, Seibold GM, Eikmanns BJ. Metabolic engineering of Corynebacterium glutamicum for production of UDP-N-acetylglucosamine. Front Bioeng Biotechnol, 2021, 9, pmcid: 8495162 |
15. | Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L. Key factors for a one-pot enzyme cascade synthesis of high molecular weight hyaluronic acid. Int J Mol Sci, 2019, 20: 5664, pmcid: 6888640 |
16. | Mahour R, Klapproth J, Rexer TFT, Schildbach A, Klamt S, Pietzsch M, et al.. Establishment of a five-enzyme cell-free cascade for the synthesis of uridine diphosphate N-acetylglucosamine. J Biotechnol, 2018, 283: 120-129, |
17. | Muthana MM, Qu J, Xue M, Klyuchnik T, Siu A, Li Y, et al.. Improved one-pot multienzyme (OPME) systems for synthesizing UDP-uronic acids and glucuronides. Chem Commun (Camb), 2015, 51: 4595-4598, |
18. | Guan W, Cai L, Fang J, Wu B, George Wang P. Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chem Commun (Camb), 2009, 45: 6976-6978, |
19. | Zhao G, Guan W, Cai L, Wang PG. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat Protoc, 2010, 5: 636-646, pmcid: 2915437 |
20. | Chen Y, Thon V, Li Y, Yu H, Ding L, Lau K, et al.. One-pot three-enzyme synthesis of UDP-GlcNAc derivatives. Chem Commun (Camb), 2011, 47: 10815-10817, |
21. | Li S, Wang S, Wang Y, Qu J, Liu X, Wang P, et al.. Gram-scale production of sugar nucleotides and their derivatives. Green Chem, 2021, 23: 2628-2633, |
22. | Pieslinger AM, Hoepflinger MC, Tenhaken R. Cloning of glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars. J Biol Chem, 2010, 285: 2902-2910, |
23. | Guo Y, Fang J, Li T, Li X, Ma C, Wang X, et al.. Comparing substrate specificity of two UDP-sugar pyrophosphorylases and efficient one-pot enzymatic synthesis of UDP-GlcA and UDP-GalA. Carbohydr Res, 2015, 411: 1-5, pmcid: 4481193 |
24. | Gottschalk J, Blaschke L, A?mann M, Kuballa J, Elling L. Integration of a nucleoside triphosphate regeneration system in the one-pot ssynthesis of UDP-sugars and hyaluronic acid. Chem Cat Chem, 2021, 13: 3074-3083, |
25. | Wahl C, Hirtz D, Elling L. Multiplexed capillary electrophoresis as analytical tool for fast optimization of multi-enzyme cascade reactions—synthesis of nucleotide sugars: dedicated to Prof. Dr. Vladimir K?en on the occasion of his 60(th) birthday. Biotechnol J, 2016, 11: 1298-1308, |
26. | Zhou W, You C, Ma H, Ma Y, Zhang YH. One-pot biosynthesis of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes. J Agric Food Chem, 2016, 64: 1777-1783, |
27. | Zhang Z, Tsujimura M, Akutsu J, Sasaki M, Tajima H, Kawarabayasi Y. Identification of an extremely thermostable enzyme with dual sugar-1-phosphate nucleotidylyltransferase activities from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. J Biol Chem, 2005, 280: 9698-9705, |
28. | Satomura T, Kusumi K, Ohshima T, Sakuraba H. Identification and characterization of UDP-glucose dehydrogenase from the hyperthermophilic archaon, Pyrobaculum islandicum. Biosci Biotechnol Biochem, 2011, 75: 2049-2051, |
29. | Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, et al.. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD+ and NADP+. Biotechnol Bioeng, 2012, 109: 53-62, |
30. | Schm?lzer K, Lemmerer M, Gutmann A, Nidetzky B. Integrated process design for biocatalytic synthesis by a Leloir glycosyltransferase: UDP-glucose production with sucrose synthase. Biotechnol Bioeng, 2017, 114: 924-928, |
31. | DeAngelis PL, Papaconstantinou J, Weigel PH. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J Biol Chem, 1993, 268: 19181-19184, |
32. | Li L, Eom HJ, Park JM, Seo E, Ahn JE, Kim TJ, et al.. Characterization of the major dehydrogenase related to d-lactic acid synthesis in Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293. Enzyme Microb Technol, 2012, 51: 274-279, |
33. | Wang S, Zhang J, Wei F, Li W, Wen L. Facile synthesis of sugar nucleotides from common sugars by the cascade conversion strategy. J Am Chem Soc, 2022, 144: 9980-9989, |
34. | Wang Y, Heermann R, Jung K. CipA and CipB as scaffolds to organize proteins into crystalline inclusions. ACS Synth Biol, 2017, 6: 826-836, |
35. | Wang P, Xu R, Zhao L, Wang Y, Du G, Chen J, et al.. Construction of a protein crystalline inclusion-based enzyme immobilization system for biosynthesis of PAPS from ATP and sulfate. ACS Synth Biol, 2023, 12: 1487-1496, |
36. | Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods, 2009, 6: 343-345, |
37. | Frohnmeyer H, Elling L. Enzyme cascades for the synthesis of nucleotide sugars: updates to recent production strategies. Carbohydr Res, 2023, 523, |
38. | Nishimoto M, Kitaoka M. Identification of N-acetylhexosamine 1-kinase in the complete Lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol, 2007, 73: 6444-6449, pmcid: 2075035 |
39. | Gisin J, Schneider A, N?gele B, Borisova M, Mayer C. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol, 2013, 9: 491-493, |
40. | Mayer C, Kluj RM, Mühleck M, Walter A, Unsleber S, Hottmann I, et al.. Bacteria's different ways to recycle their own cell wall. Int J Med Microbiol, 2019, 309, |
41. | Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol, 2003, 62: 99-109, |
42. | Olsen LR, Tian Y, Roderick SL. Purification, crystallization and preliminary X-ray data for Escherichia coli GlmU: a bifunctional acetyltransferase/uridyltransferase. Acta Crystallogr D Biol Crystallogr, 2001, 57: 296-297, |
43. | Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, et al.. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol, 2002, 4: 799-808, |
44. | Holden MT, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, et al.. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog, 2009, 5, pmcid: 2654543 |
45. | Gangl R, Behmüller R, Tenhaken R. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway. PLoS ONE, 2014, 9, pmcid: 3938481 |
46. | Mio T, Yabe T, Arisawa M, Yamada-Okabe H. The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. J Biol Chem, 1998, 273: 14392-14397, |
47. | Schnurr JA, Storey KK, Jung HJ, Somers DA, Gronwald JW. UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta, 2006, 224: 520-532, |
48. | El-Araby AM, Feltzer R, Kim C, Mobashery S. Application of 2D-ITC to the elucidation of the enzymatic mechanism of N-acetylmuramic acid/N-acetylglucosamine kinase (AmgK) from Pseudomonas aeruginosa. Biochemistry, 2023, 62: 1337-1341, |
49. | Muthana MM, Qu J, Li Y, Zhang L, Yu H, Ding L, et al.. Efficient one-pot multienzyme synthesis of UDP-sugars using a promiscuous UDP-sugar pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem Commun (Camb), 2012, 48: 2728-2730, |
50. | Xu R, Wang Y, Huang H, Jin X, Li J, Du G, et al.. Closed-loop system driven by ADP phosphorylation from pyrophosphate affords equimolar transformation of ATP to 3'-Phosphoadenosine-5'-phosphosulfate. ACS Catal, 2021, 11: 10405-10415, |
51. | Xu R, Zhang W, Xi X, Chen J, Wang Y, Du G, et al.. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Nat Commun, 2023, 14: 7297, pmcid: 10638397 |
52. | Decker D, Kleczkowski LA. UDP-sugar producing pyrophosphorylases: distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions. Front Plant Sci, 2018, 9: 1822, |