Metabolic engineering of Corynebacterium glutamicum CGY-PG-304 for promoting gamma-aminobutyric acid production

Yang Wang1,2, Chengzhen Yao1,2, Danyang Huang2, Hedan Li1,2, Ying Li1,2, Ziwei Liu1,2, Benzheng Zhou1,2, Xiaoqing Hu1, Xiaoyuan Wang1,2,3,j()

Systems Microbiology and Biomanufacturing ›› 2024, Vol. 4 ›› Issue (3) : 915-927. DOI: 10.1007/s43393-024-00236-0
Original Article

Metabolic engineering of Corynebacterium glutamicum CGY-PG-304 for promoting gamma-aminobutyric acid production

  • Yang Wang1,2, Chengzhen Yao1,2, Danyang Huang2, Hedan Li1,2, Ying Li1,2, Ziwei Liu1,2, Benzheng Zhou1,2, Xiaoqing Hu1, Xiaoyuan Wang1,2,3,j()
Author information +
History +

Abstract

Gamma-aminobutyric acid is a versatile and non-protein amino acid that plays a significant role in medicine, food, and cosmetics. The synthesis of gamma-aminobutyric acid is restricted by complex metabolic mechanisms and suboptimal fermentation conditions. Previously, we had constructed the Corynebacterium glutamicum strain CGY-PG-304 which could efficiently produce gamma-aminobutyric acid. In this study, we promoted gamma-aminobutyric acid production in CGY-PG-304 by enhancing the carbon flow in the TCA cycle, streamlining the mycolic acid layer of the cell wall, and optimizing the fermentation conditions. First, the genes sucCD encoding succinyl coenzyme A synthase, the gene cmrA encoding the ketoacyl reductase, and the gene treY encoding maltooligosaccharyl trehalose synthase were deleted in CGY-PG-304 individually or in combination. The yield of gamma-aminobutyric acid was increased in all the resulting strains among which CGW003 was the best. Next, the gene acnA encoding cis-aconitase or the gltS encoding sodium-coupled glutamate secondary uptake system were overexpressed in CGW003 using plasmid, and the former produced more gamma-aminobutyric acid than the latter. Therefore, the promoter of the chromosomal gene acnA in CGW003 was replaced by the strong promoter PtacM, resulting in the final strain CGW005. CGW005 could produce 112.03 g/L of gamma-aminobutyric acid with a yield of 0.34 g/g of glucose by fed-batch fermentation.

Keywords

Corynebacterium glutamicum / GABA production / Metabolic engineering / treY / acnA / Medium optimization

Cite this article

Download citation ▾
Yang Wang, Chengzhen Yao, Danyang Huang, Hedan Li, Ying Li, Ziwei Liu, Benzheng Zhou, Xiaoqing Hu, Xiaoyuan Wang. Metabolic engineering of Corynebacterium glutamicum CGY-PG-304 for promoting gamma-aminobutyric acid production. Systems Microbiology and Biomanufacturing, 2024, 4(3): 915‒927 https://doi.org/10.1007/s43393-024-00236-0

References

1.
Abdou AM, Higashiguchi S, Horie K, Kim M, Hatta H, Yokogoshi H. Relaxation and immunity enhancement effects of γ-Aminobutyric acid (GABA) administration in humans. BioFactors, 2006, 263: 201-208,
2.
Xu M, Gao H, Ma Z, Han J, Zheng K, Shao M, Rao Z. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids, 2022, 5411: 1437-1450,
3.
Yamano N, Kawasaki N, Takeda S, Nakayama A. Production of 2-pyrrolidone from biobased glutamate by using Escherichia coli. J Polym Environ, 2012, 212: 528-533,
4.
Ansar M, Bakkas S, Taoufik J, Ebrik SAA, Berthelot P. Synthesis of new N-substituted pyrrolidin-2-ones as cyclic analog of gamma-aminobutyric acid. Ann Pharm Fr, 2001, 591: 40-50
5.
Jorge JM, Nguyen AQ, Perez-Garcia F, Kind S, Wendisch VF. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnol Bioeng, 2017, 1144: 862-873,
6.
Yao C, Hu X, Wang X. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Express, 2021, 111: 1-15,
7.
Qin T, Hu X, Hu J, Wang X. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol Appl Biochem, 2015, 624: 563-573,
8.
Wang X, Zhang H, Quinn P. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2018, 10210: 4319-4330,
9.
Dong X, Zhao Y, Hu J, Li Y, Wang X. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol, 2016, 93–94: 70-78,
10.
Zhang Y, Liu Y, Zhang S, Ma W, Wang J, Yin L, Wang X. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production. Biotechnol Appl Biochem, 2021, 683: 568-584,
11.
Takahashi C, Shirakawa J, Tsuchidate T, Okai N, Hatada K, Nakayama H, Tateno T, Ogino C, Kondo A. Robust production of gamma-amino butyric acid using recombinant Corynebacterium glutamicum expressing glutamate decarboxylase from Escherichia coli. Enzyme Microb Technol, 2012, 513: 171-176,
12.
Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Microb Cell Fact, 2015, 141: 21,
13.
Baritugo KA, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Microb Cell Fact, 2018, 171: 129,
14.
Okai N, Takahashi C, Hatada K, Ogino C, Kondo A. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase. AMB Express, 2014, 41: 20,
15.
Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol, 2015, 427: 1073-1082,
16.
Zhao A, Hu X, Wang X. Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol, 2017, 1019: 3587-3603,
17.
Shi F, Zhang M, Li Y. Overexpression of ppc or deletion of mdh for improving production of gamma-aminobutyric acid in recombinant Corynebacterium glutamicum. World J Microbiol Biotechnol, 2017, 336: 122,
18.
Yao C, Shi F, Wang X. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Biotechnol Appl Biochem, 2023, 701: 7-21,
19.
Zhang Y, Song L, Gao Q, Yu S, Li L, Gao N. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl Microbiol Biotechnol, 2012, 946: 1619-1627,
20.
Sun L, Baias Y, Zhang X, Zhou C, Zhang J, Su X, Luo H, Yao B, Wang Y, Tu T. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient gamma-aminobutyric acid production. Microb Cell Fact. 2021;201:153. doi:https://doi.org/10.1186/s12934-021-01646-8.
21.
Xiong Q, Xu Z, Xu L, Yao Z, Li S, Xu H. Efficient production of gamma-GABA using recombinant E. coli expressing glutamate gecarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae. Appl Biochem Biotechnol 2017;1834:1390–1400. doi:https://doi.org/10.1007/s12010-017-2506-4.
22.
Gebhardt H, Meniche X, Tropis M, Kr?mer R, Daffé M, Morbach S. The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology, 2007, 1535: 1424-1434,
23.
Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits l-glutamate efflux of Corynebacterium glutamicum. Microbiology-Sgm, 2005, 151: 1359-1368,
24.
Lanéelle MA, Tropis M, Daffé M. Current knowledge on mycolic acids in Corynebacterium glutamicum and their relevance for biotechnological processes. Appl Microbiol Biotechnol, 2013, 9723: 9923-9930,
25.
Klatt S, Brammananth R, O’Callaghan S, Kouremenos KA, Tull D, Crellin PK, Coppel RL, McConville MJ. Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry. J Lipid Res, 2018, 597: 1190-1204,
26.
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve l-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res, 2023, 272,
27.
Hu J, Tan Y, Li Y, Hu X, Wang X. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid, 2013, 703: 303-313,
28.
Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-guided metabolic rewiring for gamma-aminobutyric acid and butyrolactam biosynthesis in Corynebacterium glutamicum ATCC13032. Biology (Basel), 2022, 116: 846,
29.
Tr?tschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Kr?mer R, Burkovski A. GltS, the sodium-coupled l-glutamate uptake system of Corynebacterium glutamicum: identification of the corresponding gene and impact on l-glutamate production. Appl Microbiol Biotechnol, 2003, 606: 738-742,
30.
Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of gamma-aminobutyric acid and its precursor l-glutamate in recombinant Corynebacterium glutamicum. Biotech Lett, 2015, 377: 1473-1481,
31.
Schultz C, Niebisch A, Gebel L, Bott M. Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol, 2007, 763: 691-700,
32.
Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J Biol Chem, 2007, 28215: 11000-11008,
33.
Li H, Xu D, Liu Y, Tan X, Qiao J, Li Z, Qi B, Hu X, Wang X. Preventing mycolic acid reduction in Corynebacterium glutamicum can efficiently increase l-glutamate production. Biochem Eng J, 2022, 177,
34.
Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol, 2014, 61–62: 35-43,
35.
Delaunay S, Lapujade P, Engasser JM, Goergen JL. Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks. J Ind Microbiol Biotechnol, 2002, 286: 333-337,
36.
Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol, 2017, 333: 64,
37.
Kirchner O, Tauch A. Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol, 2003, 1041–3: 287-299,
Funding
National Key Research and Development Program of China(2021YFC2100900)

Accesses

Citations

Detail

Sections
Recommended

/