1. | Paul JS, Gupta N, Beliya E, Tiwari S, Jadhav SK. Aspects and recent trends in microbial α-amylase: a review. Appl Biochem Biotechnol, 2021, 193(8): 2649-2698, |
2. | Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol, 2018, 34(10): 145, |
3. | Zhang Q, Wu Y, Gong M, Zhang H, Liu Y, Lv X, Li J, Du G, Liu L. Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem, 2021, 65(2): 173-185, |
4. | Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact, 2020, 19(1): 173, pmcid: 7650271 |
5. | Jürgen B, Hanschke R, Sarvas M, Hecker M, Schweder T. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol, 2001, 55(3): 326-332, |
6. | Sarvas M, Harwood CR, Bron S, van Dijl JM. Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochem Biophys Acta, 2004, 1694(1–3): 311-327, |
7. | Quesada-Ganuza A, Antelo-Varela M, Mouritzen JC, Bartel J, Becher D, Gjermansen M, Hallin PF, Appel KF, Kilstrup M, Rasmussen MD, Nielsen AK. Identification and optimization of PrsA in Bacillus subtilis for improved yield of amylase. Microbial Cell Factories, 2019, pmcid: 6749698 |
8. | Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev, 2022, |
9. | Zhang K, Su L, Wu J. Recent advances in recombinant protein production by Bacillus subtilis. Annu Rev Food Sci Technol, 2020, 11: 295-318, |
10. | Jia Y, Liu H, Bao W, Weng M, Chen W, Cai Y, Zheng Z, Zou G. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase. FEBS Lett, 2010, 584(23): 4789-4796, |
11. | Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst, 2017, 4(3): 291-305.e7, pmcid: 5400513 |
12. | Chen J, Fu G, Gai Y, Zheng P, Zhang D, Wen J. Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact, 2015, 14: 92, pmcid: 4482152 |
13. | Yao D, Zhang K, Su L, Liu Z, Wu J. Enhanced extracellular Bacillus stearothermophilus α-amylase production in Bacillus subtilis by balancing the entire secretion process in an optimal strain. Biocheml Eng J, 2021, |
14. | Yao D, Su L, Li N, Wu J. Enhanced extracellular expression of Bacillus stearothermophilus alpha-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and alpha-amylase mutant selection. Microb Cell Fact, 2019, 18(1): 69, pmcid: 6458788 |
15. | Geissler AS, Poulsen LD, Doncheva NT, Anthon C, Seemann SE, González-Tortuero E, Breüner A, Jensen LJ, Hjort C, Vinther J, Gorodkin J. The impact of PrsA over-expression on the Bacillus subtilis transcriptome during fed-batch fermentation of alpha-amylase production. Front Microbiol, 2022, pmcid: 9386232 |
16. | Deng Y, Nie Y, Zhang Y, Wang Y, Xu Y. Improved inducible expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis by enhancer regulation. Protein Expr Purif, 2018, 148: 9-15, |
17. | Lilge L, Vahidinasab M, Adiek I, Becker P, Kuppusamy Nesamani C, Treinen C, Hoffmann M, Morabbi Heravi K, Henkel M, Hausmann R. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. Microbiologyopen, 2021, 10(5): e1241, pmcid: 8515880 |
18. | Staudacher J, Rebnegger C, Dohnal T, Landes N, Mattanovich D, Gasser B. Going beyond the limit: Increasing global translation activity leads to increased productivity of recombinant secreted proteins in Pichia pastoris. Metab Eng, 2022, 70: 181-195, |
19. | Zhang ZX, Wang YZ, Nong FT, Xu Y, Ye C, Gu Y, Sun XM, Huang H. Developing a dynamic equilibrium system in Escherichia coli to improve the production of recombinant proteins. Appl Microbiol Biotechnol, 2022, 106(18): 6125-6137, |
20. | Elhadi D, Lv L, Jiang XR, Wu H, Chen GQ. CRISPRi engineering E. coli for morphology diversification. Metab Eng, 2016, 38: 358-369, |
21. | Cao H, Kuipers OP. Influence of global gene regulatory networks on single cell heterogeneity of green fluorescent protein production in Bacillus subtilis. Microb Cell Fact, 2018, 17(1): 134, pmcid: 6117926 |
22. | Cao H, Villatoro-Hernandez J, Weme RDO, Frenzel E, Kuipers OP. Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis. Metab Eng, 2018, 49: 143-152, |
23. | Dion MF, Kapoor M, Sun Y, Wilson S, Ryan J, Vigouroux A, van Teeffelen S, Oldenbourg R, Garner EC. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat Microbiol, 2019, 4(8): 1294-1305, pmcid: 6656618 |
24. | Antelo-Varela M, Aguilar Suárez R, Bartel J, Bernal-Cabas M, Stobernack T, Sura T, van Dijl JM, Maa? S, Becher D. Membrane modulation of super-secreting "midiBacillus" Expressing the Major Staphylococcus aureus antigen—a mass-spectrometry-based absolute quantification approach. Front Bioeng Biotechnol, 2020, 8: 143, pmcid: 7059095 |
25. | Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol, 1961, 81(5): 741-746, pmcid: 279084 |
26. | Xue GP. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbial Methods, 1999, 34(3): 183-191, |
27. | Romero D, Pérez-García A, Veening JW, de Vicente A, Kuipers OP. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. J Microbiol Methods, 2006, 66(3): 556-559, |
28. | Mao X, Huang Z, Sun G, Zhang H, Lu W, Liu Y, Lv X, Du G, Li J, Liu L. High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. Bioresour Technol, 2021, 341: 125836, |
29. | Ji M, Liu Y, Wu H, Li S, Duan H, Shi J, Sun J. Engineering Bacillus subtilis ATCC 6051a for the production of recombinant catalases. J Industrial Microbiol Biotechnol, 2021, |
30. | Zhang XZ, Zhang Y. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microb Biotechnol, 2011, 4(1): 98-105, |
31. | Zhang K, Su L, Wu J. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl Microbiol Biotechnol, 2018, 102(12): 5089-5103, |
32. | Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene, 1990, 96(1): 23-28, |
33. | Yan X, Yu H-J, Hong Q, Li S-P. Cre/ loxSystem and PCR-Based Genome Engineering in Bacillus subtilis. Appl Environ Microbiol, 2008, 74(17): 5556-5562, pmcid: 2546623 |
34. | Bernal-Cabas M, Miethke M, Antelo-Varela M, Aguilar Suárez R, Neef J, Sch?n L, Gabarrini G, Otto A, Becher D, Wolf D, van Dijl JM. Functional association of the stress-responsive LiaH protein and the minimal TatAyCy protein translocase in Bacillus subtilis. Biochimica et biophysica acta Mol Cell Res, 2020, 1867(8): 118719, |
35. | Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JC. Folding optimization in vivo uncovers new chaperones. J Mol Biol, 2015, 427(18): 2983-2994, pmcid: 4569523 |
36. | Zhang K, Duan X, Wu J. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep, 2016, 6: 27943, pmcid: 4910044 |
37. | Kiran F, Simsek T, Osmanagaoglu O. Molecular cloning and expression of alpha-amylase gene from thermophilic Bacillus subtilis in Escherichia coli. Res J Biotechnol, 2014, 9(7): 1-6 |
38. | Wang P, Wang P, Tian J, Yu X, Chang M, Chu X, Wu N. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Rep, 2016, 6: 22229 |
39. | Wang Y, Zhao N, Ma J, Liu J, Yan Q, Jiang Z. High-level expression of a novel alpha-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Biol Macromol, 2019, 127: 683-692, |
40. | Tsukagoshi N, Iritani S, Sasaki T, Takemura T, Ihara H, Idota Y, Yamagata H, Udaka S. Efficient synthesis and secretion of a thermophilic alpha-amylase by protein-producing Bacillus brevis 47 carrying the Bacillus stearothermophilus amylase gene. J Bacteriol, 1985, 164(3): 1182-1187, pmcid: 219313 |