1. | Bambaradeniya CNB, Amerasinghe FP. Biodiversity associated with the rice field agroecosystem in asian countries: a brief review. Working Paper 63. Colombo, Sri Lanka: International Water Management Institute. 2003. https://doi.org/10.3910/2009.193. |
2. | Daniel AI, Fadaka AO, Gokul A, Bakare OO, Aina O, Fisher S, Burt AF, Mavumengwana V, Keyster M, Klein A. Biofertilizer: the future of food security and food safety. Microorganisms, 2022, 10: 1220, pmcid: 9227430 |
3. | Sahoo RK, Bhardwaj D, Tuteja N. Biofertilizers: a sustainable eco-friendly agricultural approach to crop improvement. In: Tuteja N, Singh Gill S, editors. Plant acclimation to environmental stress. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-5001-6_15. |
4. | Galhano V, Laranjo GJ, Valiente EF, Videira R, Peixoto F. Impact of herbicides on non-target organisms in sustainable irrigated rice production systems: state of knowledge and future prospects. In: Kortekamp A, editor. Herbicides and environment. Croatia: Intech; 2011, p. 45–72. |
5. | Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, El-Shershaby NA. Algae as Bio-fertilizers: between current situation and future prospective. Saudi J Biol Sci, 2022, 29(5): 3083-3096, pmcid: 8961072 |
6. | |
7. | Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB. Agricultural importance of algae. Afr J Biotechnolol, 2012, 11(54): 11648-11658, |
8. | Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon, 2023, 9(4), pmcid: 10161259 |
9. | Ronga D, Biazzi E, Parati K, Carminati D, Carminati E, Tava A. Microalgal bio stimulants and biofertilizers in crop productions. Agronomy, 2019, 9(4): 192, |
10. | Hussain F, Shah SZ, Ahmad H, Abubshait SA, Abubshait HA, Laref A, Manikandan A, Kusuma HS, Iqbal M. Microalgae an ecofriendly and sustainable wastewater treatment option: biomass application in biofuel and biofertilizer production. A review. Renew Sust Energ Rev, 2021, 137, |
11. | Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MNA, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste Biomass Valori, 2018, 9(5): 793-800, |
12. | Mishra U, Pabbi S. Cyanobacteria: a potential biofertilizer for rice. Resonance, 2004, 9: 6-10, |
13. | Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U. Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. FEMS Microbiol Ecol, 2005, 54: 131-140, |
14. | Gon?alves AL. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl Sci, 2021, 11(2): 871, |
15. | Shehata Sami M, Schmidhalter U, Val?íková M, Junge H. Effect of bio-stimulants on yield and quality of head lettuce grown under two sources of nitrogen. Gesunde Pflanzen, 2016, 68(1): 33-39, |
16. | Sahu D, Priyadarshani I, Rath B. Cyanobacteria as potential biofertilizer. CIBTech J Microbiol, 2012, 1: 20-26 |
17. | Roger PA, Reynaud PA. Free-living blue-green algae in tropical soils. In: Dommergues Y, Diem H, editors. Microbiology of tropical soil and plant productivity. La Hague: Martinus Nijhoff Publisher; 1982. https://doi.org/10.1007/978-94-009-7529-3_5. |
18. | Rodríguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst, 2006, 2: 1-4, |
19. | Saadatnia H, Riahi H. Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ, 2009, 55(5): 207-212, |
20. | Al-Sherif EA, Abd El-Hameed MS, Mahmoud MA, Ahmed HS. American–Eurasian. J Agric Environ Sci, 2015, 15: 794-799 |
21. | Wilson LT. Cyanobacteria: a potential nitrogen source in rice fields. Tex Rice, 2006, 6: 9-10 |
22. | |
23. | Malliga P, Uma L, Subramanian G. Lignolytic activity of the cyanobacterium Anabaena azollae ML2 and the value of coir waste as a carrier for biofertilizer. Microbios, 1996, 86: 175-183 |
24. | Pabbi S. Blue-green algae: a potential biofertilizer for rice. Algae world. 2015;449–465. |
25. | Peter Nosko, Bliss LC, Cook FD. The association of free-living nitrogen-fixing bacteria with the roots of high arctic graminoids. Arc Antarc Alp Res 1994;26(2):180–186. https://doi.org/10.2307/1551782 |
26. | Baral SR, Mishra DK, Kumar HD. In situ nitrogen fixation rates in ten rice fields of Kathmandu valley, Nepal. In: Biofertilizers: potentialities and problems. Calcutta: Naya Prakash; 1988, p. 103–107. |
27. | De PK. The role of blue-green algae in nitrogen fixation in rice fields. Proc R Soc Lond B: Biol Sci, 1939, 127(846): 121-139, |
28. | Singh DT, Nirmala K, Modi DR, Katiyar S, Singh HN. Genetic transfer of herbicide resistance gene(s) from Gloeocapsa spp. to Nostoc muscorum. Mol Gen Genet. 1987;208:436–438. https://doi.org/10.1038/30484 |
29. | Chaurasia AK, Parasnis A, Apte SK. An integrative expression vector for strain improvement and environmental applications of the nitrogen fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods. 2008;73:133–141. https://doi.org/10.1016/j.mimet.2008.01.013 |
30. | Arora J, Garcha HS, Pandher MS, Gupta RP. Blue green algae application in relation to nitrogen and grain yield of rice. Res Develop Report, 1986, 3(2): 72-76 |
31. | Bittencourt PP, Alves AF, Ferreira MB, da Silva Irineu LES, Pinto VB, Olivares FL. Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms, 2023, 11(2): 502, pmcid: 9958599 |
32. | Subrahmanyan R, Relwani LL, Manna GB. Fertility build-up of rice field soils by blue-green algae. Proc Indian Acad Sci, 1965, 62: 252-272, |
33. | Kurosawa E. Experimental studies on the nature of the substance secreted by the" bakanae" fungus. Nat Hist Soc Formosa, 1926, 16: 213-227 |
34. | Skoog F. Chemical regulation of growth and organ formation in plant tissue cultured in vitro. In Symp Soc Exp Biol, 1957, 11: 118-131 |
35. | Venkataraman GS. Nitrogen fixation by blue green algae and its economic importance. In: Symposia papers I. Non-symbiotic nitrogen fixation and organic matter in the tropics. Int Cong Soil Sci. 1982;12:69–82. |
36. | Dhargalkar VK, Untawale AG. Some observation of the effect of SLF on higher plants. Indian J Mar Sci, 1983, 12(1): 210-214 |
37. | Strik WA, Aurthur GD, Lourens AF, Novak O, Strnad M, Staden JV, et al.. Changes in cytokinins and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol, 2004, 16: 31-39, |
38. | El-Barody GS, Moussa MY, Shallan AM, Ali AM, Sabh ZA, Shalaby AE. Contribution to the aroma, biological activities, minerals, protein, pigments and lipid contents of the red alga, Asparagopsis taxiformes (Delie) Trevisan. J Appl Sci Res, 2007, 3(12): 1825-1834 |
39. | Thangam C, Dhananjayan R. Anti-inflammatory potential of the seeds of Carum copticum Linn. Indian J Pharmacol, 2003, 35: 388-390 |
40. | Leloup M, Nicolau R, Pallier V, Yéprémian C, Feuillade-Cathalifaud G. Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. J Environ Sci, 2013, 25(6): 1089-1097, |
41. | Venkataraman GS. . Algal biofertilizers and rice cultivation, 1972 New Delhi Today and Tomorrow Printers and Publishers |
42. | Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv, 2018, 36: 1255-1273, |
43. | Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N. Endophytic cyanobacteria in a 400-million-yr-old land plant: a scenario for the origin of a symbiosis?. Rev Palaeobot Palynol, 2009, 153(1–2): 62-66, |
44. | Aliyu OM, Adeigbe OO, Awopetu JA. Foliar application of the exogenous plant hormones at pre-blooming stage improves flowering and fruiting in cashews ( Anacardium occidentale L.). J Crop Sci Biotechnol. 2011;14(2):143–150. https://doi.org/10.1007/s12892-010-0070-3 |
45. | Saha KC, Mandal LN. Effect of algal growth on the availability of phosphorus, iron, and manganese in rice soil. Plant Soil, 1979, 52: 139-146, |
46. | Subhashini D, Kaushik BD. Amelioration of sodic soils with blue-green algae. Aust J Soil Res, 1981, 19: 361-366, |
47. | Das SC, Mandal B, Mandal LN. Effect of growth and subsequent decomposition of blue-green algae on the transformation of iron and manganese in submerged soils. Plant Soil, 1991, 138: 75-84, |
48. | Lange W. Speculations on a possible essential function of the gelatinous sheath of blue-green algae. Can J Microbiol, 1976, 22: 1181-1185, |
49. | Whitton BA. Soils and rice fields. In: Whitton BA, Potts M, editors. The ecology of cyanobacteria: their diversity in time and space. Netherlands: Springer; 2000, p. 233–255. https://doi.org/10.1007/0-306-46855-7 |
50. | Thivy F. Seaweed manure for perfect soil and smiling fields. Salt Res Ind, 1964, 1: 1-4 |
51. | Venkataraman GS. . Algal biofertilizers for rice cultivation, 1972 New Delhi Today & Tomorrow |
52. | |
53. | Schopf JW. Fossil evidence of Archaean life. Philos Trans R Soc B, 2006, 361: 869-888, |
54. | Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R. Consortial degradation of high molecular weight polycyclic aromatic hydrocarbons by bacterial consortium isolated from contaminated sites. Bioresour Technol, 2011, 102(3): 2276-2284 |
55. | Shpigel M, Zohar Y. The use of Spirulina in Israel. Hydrobiologia, 1989, 180(1): 147-152 |
56. | Borowitzka MA. High-value products from microalgae—their development and commercialization. J Appl Phycol, 2013, 25(3): 743-756, |
57. | Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25(3): 294-306, |
58. | Tejada M, Gonzalez JL. Influence of two organic amendments on the soil biological properties under greenhouse and outdoor conditions. Soil Biol Biochem, 2008, 40(3): 575-582 |
59. | Tiquia SM, Tam NFY. Bioremediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated sewage sludge. Compost Sci Util, 1998, 6(2): 77-88 |
60. | Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries Coast, 2011, 35(2): 245-258 |
61. | Guiry MD, Guiry GM. Algae Base. World-wide electronic publication, National University of Ireland, Galway. 2012. http://www.algaebase.org |
62. | Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol, 2013, 12(2): 165-178, |
63. | Chinnasamy S, Bhatnagar A, Hunt RW. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol, 2010, 101(9): 3097-3105, |
64. | Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G. Renella G. Microbial diversity and soil functions. Eur J Soil Sci. 2003;54(4):655–670. |
65. | Shukla PS, Borza T, Critchley AT, Hiltz D, Norrie J, Prithiviraj B. Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE, 2018, 13(11), pmcid: 6205635 |
66. | El-Komy HM, Hassan EA. Algae extract as an elicitor of induced systemic resistance against citrus canker in Valencia orange plants. Plant Pathol J, 2019, 35(3): 239-249 |
67. | Kaushik BD, Venkataraman GS. Studies on the utilization of blue-green algae as biofertilizers. Soil Biol Biochem, 1981, 13(3): 183-188 |
68. | Tiwari A, Singh V, Thakur N. Nutraceuticals from freshwater Microalgae. Int J Therap Appl, 2016, 32: 5-10 |
69. | Archana T, Deepika S. Antibacterial activity of bloom forming cyanobacteria against clinically isolated human pathogenic microbes. J Algal Biomass Utln, 2013, 4(1): 83-89 |
70. | Tiwari A, Akshita S. Antifungal activity of Anabaena variabilis against Plant pathogens. Int J Pharma Biosci, 2013, 4(2): 1030-1036 |
71. | Tiwari A. . Cyanobacteria—recent advances and new perspectives, 2023 UK Intech Open Publishers |