1. | Hong J, Kim K. Crystal structure of γ-aminobutyrate aminotransferase in complex with a PLP-GABA adduct from Corynebacterium glutamicum. Biochem Biophys Res Commun, 2019, 514: 601-606, |
2. | Hong AR, Kim YA, Bae JH, et al.. A possible link between parathyroid hormone secretion and local regulation of GABA in human parathyroid adenomas. J Clin Endocrinol Metab, 2016, 101: 2594-2601, |
3. | Xu N, Wei L, Liu J. Biotechnological advances and perspectives of gamma-aminobutyric acid production. World J Microbiol Biotechnol, 2017, 33: 64, |
4. | Piao X, Jiang S, Wang J, et al.. Pingchuan formula attenuates airway mucus hypersecretion via regulation of the PNEC-GABA-IL13-Muc5ac axis in asthmatic mice. Biomed Pharmacother, 2021, 140, |
5. | Strandwitz P, Kim KH, Terekhova D, et al.. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol, 2019, 4: 396-403, |
6. | Sarasa SB, Mahendran R, Muthusamy G, Thankappan B, Selta DRF, Angayarkanni J. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): its production and role in microbes. Curr Microbiol, 2020, 77: 534-544, |
7. | Luo H, Liu Z, Xie F, et al.. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol, 2021, 41: 491-512, |
8. | Yuan H, Zhang W, Xiao G, Zhan J. Efficient production of gamma-aminobutyric acid by engineered Saccharomyces cerevisiae with glutamate decarboxylases from Streptomyces. Biotechnol Appl Biochem, 2020, 67(2): 240-248, |
9. | Jia M, Zhu Y, Wang L, Sun T, Pan H, Li H. pH auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817. Fermentation, 2022, 8(5): 208, |
10. | Huang Y, Su L, Wu J. Pyridoxine supplementation improves the activity of recombinant glutamate decarboxylase and the enzymatic production of gama-aminobutyric acid. PLoS ONE, 2016, 11(7), pmcid: 4954698 |
11. | He W, Mu W, Jiang B, Yan X, Zhang T. Food-grade expression of d-psicose 3-epimerase with tandem repeat genes in Bacillus subtilis. J Agric Food Chem, 2016, 64: 5701-5707, |
12. | Song Y, Nikoloff JM, Zhang D. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis. J Microbiol Biotechnol, 2015, 25: 963-977, |
13. | Meissner L, Kauffmann K, Wengeler T, Mitsunaga H, Fukusaki E, Büchs J. Influence of nitrogen source and pH value on undesired poly (γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain. J Ind Microbiol Biotechnol, 2015, 42: 1203-1215, |
14. | Popov M, Petrov S, Kirilov K, Ivanov GNI. Segregational instability in E. coli of expression plasmids carrying human interferon gamma gene and its 3′-end truncated variants. Biotechnol Biotechnol Equip, 2009, 23: 840-843, |
15. | Peubez I, Chaudet N, Mignon C, et al.. Antibiotic-free selection in E. coli: new considerations for optimal design and improved production. Microb Cell Fact, 2010, 9: 65, pmcid: 2941680 |
16. | Yang S, Kang Z, Cao W, Du G, Chen J. Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis. J Biotechnol, 2016, 219: 40-47, |
17. | Li R, Takala TM, Qiao M, Xu H, Saris PEJ. Nisin-selectable food-grade secretion vector for Lactococcus lactis. Biotechnol Lett, 2011, 33: 797-803, |
18. | Emond E, Lavallée R, Drolet G, Moineau S, LaPointe G. Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol, 2001, 67: 1700-1709, pmcid: 92788 |
19. | Xia Y, Chen W, Zhao J, Tian F, Zhang H, Ding X. Construction of a new food-grade expression system for Bacillus subtilis based on theta replication plasmids and auxotrophic complementation. Appl Microbiol Biotechnol, 2007, 76: 643-650, |
20. | Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res, 2012, 40, pmcid: 3384351 |
21. | Wenzel M, Altenbuchner J. Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system. Microbiology (NY), 2015, 161: 1942-1949, |
22. | Yan X, Yu H, Hong Q, Li S. Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol, 2008, 74: 5556-5562, pmcid: 2546623 |
23. | Makarova KS, Wolf YI, Iranzo J, et al.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol, 2020, 18: 67-83, |
24. | Togawa Y, Nunoshiba T, Hiratsu K. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus. Mol Genet Genomics, 2018, 293: 277-291, |
25. | Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF. Stability of biocatalysts. Curr Opin Chem Biol, 2007, 11: 220-225, |
26. | Chen H, Luo J, Zheng P, et al.. Application of Cre-lox gene switch to limit the cry expression in rice green tissues. Sci Rep, 2017, 7: 14505, pmcid: 5673937 |
27. | Zhang K, Su L, Duan X, Liu L, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system. Microb Cell Fact, 2017, 16: 32, pmcid: 5319110 |
28. | You C, Zhang X, Zhang YHP. Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Appl Environ Microbiol, 2012, 78: 1593-1595, pmcid: 3294473 |
29. | |
30. | Chen J, Jin Z, Gai Y, Sun J, Zhang D. A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker. Bioresour Bioprocess, 2017, 4: 9, |
31. | Liu D, Zhang L, Xue W, Wang Y, Ju J, Zhao B. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability. Fems Microbiol Lett, 2015, 362: fnv89, |
32. | Wangyang D, Bo J, Wanmeng M, Tao Z. Construction of a recombinant Bacillus subtilis and food-grade expression of glutamate decarboxylase. J Food Sci Biotechnol, 2020, 39: 24-31, |
33. | Zhang R, Yang Y, Wang J, Lin Y, Yan Y. Synthetic symbiosis combining plasmid displacement enables rapid construction of phenotype-stable strains. Metab Eng, 2019, 55: 85-91, |
34. | Liu Y, Liu L, Li J, Du G, Chen J. Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends Biotechnol, 2019, 37: 548-562, |
35. | Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol, 2007, 73: 1126-1135, |