1. | Abiraami TV, Singh S, Nain L. Soil metaproteomics as a tool for monitoring functional microbial communities: promises and challenges. Rev Environ Sci Bio/Technology, 2020, 19(1): 73-102 |
2. | Starke R, Jehmlich N, Bastida F. Using proteins to study how microbes contribute to soil ecosystem services: the current state and future perspectives of soil metaproteomics. J Proteomics, 2019, 198: 50-58, |
3. | Dominati E, Patterson M, Mackay A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ, 2010, 69(9): 1858-1868, |
4. | Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C. Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. Eur J Soil Sci, 2009, 60(6): 845-859 |
5. | Mueller RS, Pan C. Chapter Fifteen - Sample Handling and Mass Spectrometry for Microbial Metaproteomic Analyses. In: DeLong EFBTM in E, ed. Microbial Metagenomics, Metatranscriptomics, and Metaproteomics. Vol 531. Academic Press; 2013:289–303. doi: https://doi.org/10.1016/B978-0-12-407863-5.00015-0 |
6. | Shrestha HK, Appidi MR, Villalobos Solis MI, et al.. Metaproteomics reveals insights into microbial structure, interactions, and dynamic regulation in defined communities as they respond to environmental disturbance. BMC Microbiol, 2021, 21(1): 1-17 |
7. | Bharagava RN, Purchase D, Saxena G, Mulla SI. Chapter 26 - Applications of Metagenomics in Microbial Bioremediation of Pollutants: From Genomics to Environmental Cleanup. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:459–477. doi: https://doi.org/10.1016/B978-0-12-814849-5.00026-5 |
8. | Dashora K, Gattupalli M, Javed Z, et al.. Leveraging multiomics approaches for producing lignocellulose degrading enzymes. Cell Mol Life Sci, 2022, 79(2): 1-15, |
9. | Junge K, Cameron K, Nunn B. Chapter 12 - Diversity of Psychrophilic Bacteria in Sea and Glacier Ice Environments—Insights Through Genomics, Metagenomics, and Proteomics Approaches. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:197–216. doi: https://doi.org/10.1016/B978-0-12-814849-5.00012-5 |
10. | Srivastava N, Gupta B, Gupta S, Danquah MK, Sarethy IP. Chapter 6 - Analyzing Functional Microbial Diversity: An Overview of Techniques. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:79–102. doi: https://doi.org/10.1016/B978-0-12-814849-5.00006-X |
11. | Panigrahi S, Velraj P, Subba Rao T. Chapter 21 - Functional Microbial Diversity in Contaminated Environment and Application in Bioremediation. In: Das S, Dash HRBTMD in the GE, eds. Academic Press; 2019:359–385. doi: https://doi.org/10.1016/B978-0-12-814849-5.00021-6 |
12. | Zampieri E, Chiapello M, Daghino S, Bonfante P, Mello A. Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep, 2016, 6: 25773, pmcid: 4861934 |
13. | Vogel TM, Hirsch PR, Simonet P, et al.. Advantages of the metagenomic approach for soil exploration: reply from Vogel et al.. Nat Rev Microbiol, 2009, 7(10): 756-757 |
14. | Qian C, Hettich RL. Optimized extraction method to remove humic acid interferences from soil samples prior to microbial proteome measurements. J Proteome Res, 2017, 16(7): 2537-2546, |
15. | Lau MCY, Harris RL, Oh Y, Yi MJ, Behmard A, Onstott TC. Taxonomic and functional compositions impacted by the quality of metatranscriptomic assemblies. Front Microbiol. Published online 2018:1235 |
16. | Gutleben J, Chaib De Mares M, Van Elsas JD, Smidt H, Overmann J, Sipkema D. The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol, 2018, 44(2): 212-229, |
17. | Picotti P, Aebersold R. Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods, 2012, 9(6): 555-566, |
18. | Kleiner M. Metaproteomics: much more than measuring gene expression in microbial communities. Msystems, 2019, 4(3): e00115-e119, pmcid: 6529545 |
19. | Muth T, Renard BY, Martens L. Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics, 2016, 13(8): 757-769, |
20. | Murray AE, Freudenstein J, Gribaldo S, et al.. Roadmap for naming uncultivated Archaea and bacteria. Nat Microbiol, 2020, 5(8): 987-994, pmcid: 7381421 |
21. | Bahram M, Hildebrand F, Forslund SK, et al.. Structure and function of the global topsoil microbiome. Nature, 2018, 560(7717): 233-237, |
22. | Parks DH, Rinke C, Chuvochina M, et al.. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol, 2017, 2(11): 1533-1542, |
23. | Ogunseitan OA. Direct extraction of proteins from environmental samples. J Microbiol Methods, 1993, 17(4): 273-281 |
24. | Singleton I, Merrington G, Colvan S, Delahunty JS. The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol, 2003, 23(1): 25-32 |
25. | Wilmes P, Wexler M, Bond PL. Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE, 2008, 3(3), pmcid: 2289847 |
26. | Callister SJ, Fillmore TL, Nicora CD, et al.. Addressing the challenge of soil metaproteome complexity by improving metaproteome depth of coverage through two-dimensional liquid chromatography. Soil Biol Biochem, 2018, 125: 290-299 |
27. | Speda J, Johansson MA, Carlsson U, Karlsson M. Assessment of sample preparation methods for metaproteomics of extracellular proteins. Anal Biochem, 2017, 516: 23-36, |
28. | Redmile-Gordon MA, Armenise E, White RP, Hirsch PR, Goulding KWT. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts. Soil Biol Biochem, 2013, 67: 166-173, pmcid: 3819989 |
29. | Michalski WP, Shiell BJ. Strategies for analysis of electrophoretically separated proteins and peptides. Anal Chim Acta, 1999, 383(1–2): 27-46 |
30. | Graves PR, Haystead TAJ. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev, 2002, 66(1): 39-63, pmcid: 120780 |
31. | Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophor An Int J, 2000, 21(6): 1123-1144 |
32. | Criquet S, Farnet A, Ferre E. Protein measurement in forest litter. Biol Fertil Soils, 2002, 35(5): 307-313, |
33. | Link AJ, Eng J, Schieltz DM, et al.. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol, 1999, 17(7): 676-682, |
34. | Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ. The rhizosphere revisited: root microbiomics. Front Plant Sci, 2013, 4: 165, pmcid: 3667247 |
35. | McNear DH Jr. The rhizosphere-roots, soil and everything in between. Nat Educ Knowl, 2013, 4(3): 1 |
36. | Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep, 2020, 39(1): 3-17, |
37. | Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol, 2006, 57(1): 233-266, |
38. | Saleh D, Sharma M, Seguin P, Jabaji S. Organic acids and root exudates of Brachypodium distachyon: effects on chemotaxis and biofilm formation of endophytic bacteria. Can J Microbiol, 2020, 66(10): 562-575, |
39. | Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO. Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol, 2019, 103(3): 1155-1166, |
40. | Tartaglia M, Bastida F, Sciarrillo R, Guarino C. Soil metaproteomics for the study of the relationships between microorganisms and plants: a review of extraction protocols and ecological insights. Int J Mol Sci, 2020, 21(22): 8455, pmcid: 7697097 |
41. | Han X, He L, Xin L, Shan B, Ma B. PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res, 2011, 10(7): 2930-2936, |
42. | Rrj A, Bm A, Mb B, et al.. Genome-Resolved Metaproteomics Decodes the Microbial and Viral Contributions to Coupled Carbon and Nitrogen Cycling in River Sediments. mSystems, 2022, |
43. | Rane NR, Tapase S, Kanojia A, et al.. Molecular insights into plant–microbe interactions for sustainable remediation of contaminated environment. Bioresour Technol, 2022, 344, |
44. | Liu D, Li M, Xi B, et al.. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microb Biotechnol, 2015, 8(6): 950-960, pmcid: 4621448 |
45. | Guazzaroni ME, Herbst FA, Lores I, et al.. Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J, 2013, 7(1): 122-136, |
46. | Chiapello M, Zampieri E, Mello A. A small effort for researchers, a big gain for soil metaproteomics. Front Microbiol, 2020, 11: 88, pmcid: 7010931 |
47. | Murase A, Yoneda M, Ueno R, Yonebayashi K. Isolation of extracellular protein from greenhouse soil. Soil Biol Biochem, 2003, 35(5): 733-736 |
48. | Chen S, Rillig MC, Wang W. Improving soil protein extraction for metaproteome analysis and glomalin-related soil protein detection. Proteomics, 2009, 9(21): 4970-4973, |
49. | Chourey K, Jansson J, VerBerkmoes N, et al.. Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res, 2010, 9(12): 6615-6622, |
50. | Mandalakis M, Panikov NS, Polymenakou PN, Sizova MV, Stamatakis A. A simple cleanup method for the removal of humic substances from soil protein extracts using aluminum coagulation. Environ Sci Pollut Res, 2018, 25: 23845-23856 |
51. | Gupta SK, Rai AK, Sarim KM, et al.. Metaproteomic data of maize rhizosphere for deciphering functional diversity. Data Br, 2019, 27 |
52. | Heyer R, Schallert K, Zoun R, Becher B, Saake G, Benndorf D. Challenges and perspectives of metaproteomic data analysis. J Biotechnol, 2017, 261: 24-36, |
53. | Artursson V, Finlay RD, Jansson JK. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol, 2005, 7(12): 1952-1966, |
54. | Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J, 2017, 11(9): 1949-1963, pmcid: 5563950 |
55. | Saito MA, Bertrand EM, Duffy ME, et al.. Progress and challenges in ocean metaproteomics and proposed best practices for data sharing. J Proteome Res, 2019, 18(4): 1461-1476, pmcid: 7575043 |
56. | Lacerda CMR, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Briefings Funct Genomics Proteomics, 2009, 8(1): 75-87 |