1. | Martínez-Antonio A, Collado-Vides J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol, 2003, 6(5): 482-489, |
2. | Lobel L, Herskovits AA. Systems level analyses reveal multiple regulatory activities of codY controlling metabolism, motility and virulence in Listeria monocytogenes. PLoS Genet, 2016, 12(2): e1005870, pmcid: 4760761 |
3. | Tolibia SEM, Pacheco AD, Balbuena SYG. Engineering of global transcription factors in Bacillus, a genetic tool for increasing product yields: a bioprocess overview. World J Microbiol Biotechnol, 2023, |
4. | Henkin TM. The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett, 1996, 135(1): 9-15, |
5. | Wray LV Jr, Ferson AE, Rohrer K, Fisher SH. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acad Sci USA, 1996, 93(17): 8841-8845, pmcid: 38555 |
6. | Deng C, Wu Y, Lv X. Refactoring transcription factors for metabolic engineering. Biotechnol Adv, 2022, |
7. | Li J, Freedman JC, McClane BA. NanI sialidase, CcpA, and CodY work together to regulate epsilon toxin production by Clostridium perfringens type D strain CN3718. J Bacteriol, 2015, 197(20): 3339-3353, pmcid: 4573732 |
8. | Cao H, Villatoro-Hernandez J, Weme RDO, Frenzel E, Kuipers OP. Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis. Metab Eng, 2018, 49: 143-152, |
9. | Zhu C, Xiao F, Qiu Y, Wang Q, He Z, Chen S. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Appl Microbiol Biotechnol, 2017, 101(16): 6375-6383, |
10. | Lu WW, Wang Y, Wang T, Kong J. The global regulator CodY in Streptococcus thermophilus controls the metabolic network for escalating growth in the milk environment. Appl Environ Microbiol, 2015, 81(7): 2349-2358, pmcid: 4357943 |
11. | Sonenshein AL. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr Opin Microbiol, 2005, 8(2): 203-207, |
12. | Biswas R, Sonenshein AL, Belitsky BR. Genome-wide identification of Listeria monocytogenes CodY-binding sites. Mol Microbiol, 2020, 113(4): 841-858, pmcid: 7176553 |
13. | Levdikov VM, Blagova E, Joseph P, Sonenshein AL, Wilkinson AJ. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in gram-positive bacteria. J Biol Chem, 2006, 281(16): 11366-11373, |
14. | Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol, 2021, 41(4): 609-627, |
15. | Yao L, Shen H, Wang N, Tatlay J, Li L, Tan TW, Lee YK. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. Plant Biotechnol J, 2017, 15(4): 497-509, |
16. | Brinsmade SR, Alexander EL, Livny J, Stettner AI, Segrè D, Rhee KY, Sonenshein AL. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc Natl Acad Sci USA, 2014, 111(22): 8227-8232, pmcid: 4050614 |
17. | Pohl K, Francois P, Stenz L, Schlink F, Geiger T, Herbert S, Goerke C, Schrenzel J, Wolz C. CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J Bacteriol, 2009, 191(9): 2953-2963, pmcid: 2681790 |
18. | Zheng Y, Su TY, Qi QS. Microbial CRISPRi and CRISPRa systems for metabolic engineering. Biotechnol Bioprocess Eng, 2019, 24(4): 579591, |
19. | Li Y, Jin K, Zhang L, Ding Z, Gu Z, Shi G. Development of an inducible secretory expression system in Bacillus licheniformis based on an engineered xylose operon. J Agric Food Chem, 2018, 66(36): 9456-9464, |
20. | Zhang Y, Li Y, Xiao F, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Engineering of a biosensor in response to malate in Bacillus licheniformis. ACS Synth Biol, 2021, 10(7): 1775-1784, |
21. | Cui MJ, Teng A, Chu J, Cao B. A quantitative, high-throughput urease activity assay for comparison and rapid screening of ureolytic bacteria. Environ Res, 2022, 208: 112738, |
22. | Cui L, Vigouroux A, Rousset F. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Nat Commun, 2018, 9: 1912, pmcid: 5954155 |
23. | Ai Y-L, Wang W-J, Liu F-J. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P. Cell Res, 2023, pmcid: 10709431 |
24. | Kelly CL, Liu Z, Yoshihara A. Synthetic chemical inducers and genetic decoupling enable orthogonal control of the rhaBAD promoter. Acs Synth Biol, 2016, 5(10): 1136-1145, |
25. | Zhao Y, Li L, Zheng G, Jiang W, Deng Z, Wang Z, Lu Y. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol J, 2018, 13(9): e1800121, |
26. | Wang J, Zhao P, Li Y, Xu L, Tian P. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact, 2018, 17(1): 56, pmcid: 5887262 |
27. | Labun K, Montague TG, Krause M. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucl Acids Res, 2019, 47(W1): W171-W174, pmcid: 6602426 |
28. | Molle V, Nakaura Y, Shivers RP, Yamaguchi H, Losick R, Fujita Y, Sonenshein AL. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J Bacteriol, 2003, 185(6): 1911-1922, pmcid: 150151 |
29. | Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet, 2017, 63(3): 417-425, |
30. | Shivers RP, Dineen SS, Sonenshein AL. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol Microbiol, 2006, 62(3): 811-822, |
31. | Hsueh YH, Somers EB, Wong AC. Characterization of the codY gene and its influence on biofilm formation in Bacillus cereus. Arch Microbiol, 2008, 189(6): 557-568, |
32. | Kim JN, Burne RA. CcpA and CodY coordinate acetate metabolism in Streptococcus mutans. Appl Environ Microbiol, 2017, 83(7): e03274-e3316, pmcid: 5359479 |
33. | Zhao X, Xu J, Tan M, Zhen J, Shu W, Yang S, Ma Y, Zheng H, Song H. High copy number and highly stable Escherichia coli–Bacillus subtilis shuttle plasmids based on pWB980. Microb Cell Fact, 2020, 19(1): 25, pmcid: 7006159 |
34. | Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev, 2019, 43(3): 304-339, pmcid: 6524683 |
35. | Belitsky BR, Brinsmade SR, Sonenshein AL. Intermediate levels of Bacillus subtilis CodY activity are required for derepression of the branched-chain amino acid permease, BraB. PLoS Genet, 2015, 11(10): e1005600, pmcid: 4608796 |
36. | Lu Z, Yang S, Yuan X, Shi Y, Ouyang L, Jiang S, Yi L, Zhang G. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucl Acids Res, 2019, 47(7): e40, pmcid: 6468239 |
37. | Li D, Guo J, Zhang Z, Liu Y, Lu F, Li Q, Liu Y, Li Y. Sequence composition and location of CRE motifs affect the binding ability of CcpA protein. Int J Biol Macromol, 2023, 253(Pt 1): 126407, |
38. | Dev C, Jilani SB, Yazdani SS. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain. Microb Cell Fact, 2022, 21(1): 154, pmcid: 9356451 |
39. | Blencke HM, Homuth G, Ludwig H, M?der U, Hecker M, Stülke J. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab Eng, 2003, 5(2): 133-149, |
40. | Thanh TN, Jürgen B, Bauch M, Liebeke M, Lalk M, Ehrenreich A, Evers S, Maurer KH, Antelmann H, Ernst F, Homuth G, Hecker M, Schweder T. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol, 2010, 87(6): 2227-2235, |
41. | Sonenshein AL. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol, 2007, 5(12): 917-927, |
42. | Krause FS, Henrich A, Blombach B, Kr?mer R, Eikmanns BJ, Seibold GM. Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl Environ Microbiol, 2010, 76(1): 370-374, |
43. | Henrich A, Kuhlmann N, Eck AW, Kr?mer R, Seibold GM. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol, 2013, 195(11): 2573-2584, pmcid: 3676073 |
44. | Song Y, Liu D, Liu M, Yang H, Fan Y, Sun W, Xue Y, Zhang T, Ma Y. Transcriptional regulation of the mannan utilization genes in the alkaliphilic Bacillus sp. N16–5. FEMS Microbiol Lett, 2018, |
45. | Singh KD, Schmalisch MH, Stülke J, G?rke B. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. J Bacteriol, 2008, 190(21): 7275-7284, pmcid: 2580719 |
46. | Wray LV Jr, Fisher SH. Bacillus subtilis CodY operators contain overlapping CodY binding sites. J Bacteriol, 2011, 193(18): 4841-4848, pmcid: 3165709 |
47. | Zhang X, Zhang R, Bao T, Yang T, Xu M, Li H, Xu Z, Rao Z. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis. J Ind Microbiol Biotechnol, 2013, 40(9): 1067-1076, |
48. | Bulock LL, Ahn J, Shinde D, Pandey S, Sarmiento C, Thomas VC, Guda C, Bayles KW, Sadykov MR. Interplay of CodY and CcpA in regulating central metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol, 2022, 204(7): e0061721, |
49. | Westbrook AW, Ren X, Moo-Young M, Chou CP. Metabolic engineering of Bacillus subtilis for l-valine overproduction. Biotechnol Bioeng, 2018, 115(11): 2778-2792, |