A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus

Naveen Kumar1, Neeraj K. Aggarwal1,b

Systems Microbiology and Biomanufacturing ›› 2024, Vol. 4 ›› Issue (2) : 607-619. DOI: 10.1007/s43393-023-00226-8
Review

A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus

  • Naveen Kumar1, Neeraj K. Aggarwal1,b
Author information +
History +

Abstract

The noxious weed Parthenium hysterophorus has spread globally since departing from its native environment over two centuries ago. Its ability to thrive is attributed to adaptive features such as the lack of natural adversaries, broad adaptability, resilience to drought, insensitivity to light conditions, rapid seed production, easy seed dispersal, and allelopathic traits, enabling it to flourish in various soil types and overcome climatic constraints. We aim to eliminate the P. hysterophorus infection because we are aware of its harmful effects. Attempting to limit its expansion is not a feasible strategy for eradication; instead, it can be effectively handled by harnessing it for diverse purposes. This review provides a concise overview of the P. hysterophorus issue and highlights potential uses that could offer innovative approaches to address the problem. Newly identified applications of P. hysterophorus encompass composting, serving as a bioremediation agent for hazardous metals and dyes, acting as a cost-effective substrate for cellulase production, contributing to nanoparticle synthesis, facilitating ethanol production, and serving as a biogas source.

Keywords

Parthenium hysterophorus / Weed management / Biocontrol / Management strategies

Cite this article

Download citation ▾
Naveen Kumar, Neeraj K. Aggarwal. A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus. Systems Microbiology and Biomanufacturing, 2024, 4(2): 607‒619 https://doi.org/10.1007/s43393-023-00226-8

References

1.
Mao R, Nguyen TL, Osunkoya OO, Adkins SW. Spread pathways of the invasive weed Parthenium hysterophorus L.: the potential for water dispersal. Austral Ecol, 2019, 44(7): 1111-1122
2.
Kumar N, Sharma R, Aggarwal NK, Yadav A. Parthenium hysterophorus weed as a novel substrate for β-glucosidase production by Penicillium citrinum NAF5: application of the crude extract to biomass saccharifcation. Lett Appl NanoBioSci, 2022, 12: 1
3.
Afzal I, Akram M, Javed T, Ali F, Kalaji HM, Wróbel J, Telesiński A, Mojski J, Ahmed MA. Quantifying the germination response of Parthenium hysterophorus at various temperatures and water potentials by using population-based threshold model. Front Plant Sci, 2022, pmcid: 9606767
4.
Adkins SW, Shabbir A, Dhileepan K. . Parthenium weed: biology, ecology and management, 2018 Wallingford CABI
5.
GISD. Global invasive species database (GISD). 2018. http://www.iucngisd.org/gisd/
6.
Oduor AM. Native plant species show evolutionary responses to invasion by Parthenium hysterophorus in an African savanna. New Phytol, 2022, 233(2): 983-994,
7.
Patel S. Harmful and beneficial aspects of Parthenium hysterophorus: an update. 3 Biotech, 2011, 1(1): 1-9, pmcid: 3339593
8.
Mohapatra A, Roy S, Mishra BK. Biology of Zygogramma bicolorata (Pallister) on Parthenium hysterophorus (Linnaeus) at different temperatures in Odisha. Int J Curr Microbiol App Sci, 2021, 10(02): 515-523
9.
Kumar S. Spread, menace and management of Parthenium. Indian J Weed Sci, 2014, 46(3): 205-219
10.
Swati G, Haldar S, Ganguly A, Chatterjee PK. Review on Parthenium hysterphorus as a potential energy source. Renew Sustain Energy Rev, 2013, 20: 420-429
11.
Lalita KA, Kumar A. Review on a weed Parthenium hysterophorus (L.). Int J Curr Res Rev, 2018, 10: 23
12.
Hundessa N, Belachew K. Socio-economic impacts of Parthenium hysterophorus L. in East Shewa and West Arsi zones of Ethiopia. Int J Agric Res, Innov Technol (IJARIT), 2016, 6: 5-11
13.
Kaur L, Malhi DS, Cooper R, Kaur M, Sohal HS, Mutreja V, Sharma A. Comprehensive review on ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: a journey from noxious weed to a therapeutic medicinal plant. J Ethnopharmacol, 2021, 281,
14.
Chidawanyika F, Nyamukondiwa C, Strathie L, Fischer K. Effects of thermal regimes, starvation and age on heat tolerance of the parthenium beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following dynamic and static protocols. PLoS ONE, 2017, 12(1), pmcid: 5215736
15.
Cowie BW, Byrne MJ, Witkowski ET, Strathie LW, Goodall JM, Venter N. Parthenium avoids drought: understanding the morphological and physiological responses of the invasive herb Parthenium hysterophorus to progressive water stress. Environ Exp Bot, 2020, 171
16.
da Silva GC, de Oliveira AM, Machado JC, Ferreira MR, de Medeiros PL, Soares LA, de Souza IA, Paiva PM, Napole?o TH. Toxicity assessment of saline extract and lectin-rich fraction from Microgramma vacciniifolia rhizome. Toxicon, 2020, 187: 65-74,
17.
Kushwaha VB, Maurya S. Biological utilities of Parthenium hysterophorus. J Appl Nat Sci, 2012, 4(1): 137-143
18.
Yaacoby T, Yaacobi G, Rubin B. The competitiveness of the invasive weed Parthenium hysterophorus with field tomato (Lycopersicum esculentum) in Israel. Ecocycles, 2023, 9(1): 25-31
19.
Anwar S, Islam AH, Hussain Z, Sohaib MN, Khan N. Effect of aqueous extracts of allelopathic plants on growth and biomass of wheat and weeds. Pure Appl Biol (PAB), 2017, 6(4): 1161-1170
20.
Dukpa R, Tiwari A, Kapoor D. Biological management of allelopathic plant Parthenium sp. Open Agric, 2020, 5(1): 252-261
21.
Kanchan S, Jayachandra. Effect of Parthenium hysterophorus on nitrogen-fixing and nitrifying bacteria. Can J Bot, 1981, 59(2): 199-202
22.
Etana A, Kelbessa E, Soromessa T. Impact of Parthenium hysterophorus L. (Asteraceae) on soil chemical properties and its distribution in a reserve area: a case study in Awash National Park (ANP), Ethiopia. J Soil Sci Environ Manag, 2015, 6(5): 116-124
23.
Zhou B, Liu Z, Yang G, He H, Liu H. Microbial activity and diversity in the rhizosphere soil of the invasive species Zizania latifolia in the wetland of Wuchang Lake, China. Mar Freshw Res, 2020, 71(12): 1702-1713
24.
Shang S, Zhang Z, Zhao L, Liu L, Shi D, Xu H, Zhang H, Xie W, Zhao F, Zhou Z, Xu J. Effect of Parthenium hysterophorus L. invasion on soil microbial communities in the Yellow River Delta, China. Microorganisms., 2022, 11(1): 18, pmcid: 9863114
25.
Faisal S, Khan N. Invasive plant species affect sodom apple (calotropis procera (aiton) wt aiton) and associated plants by altering soil physiochemical characteristics in northwest pakistan. Appl Ecol Environ Res, 2022, 20(2): 1153-1171
26.
Akter A, Zuberi MI. Invasive alien species in Northern Bangladesh: identification, inventory and impacts. Int J Biodivers Conserv, 2009, 1(5): 129-134
27.
Maturi KC, Haq I, Kalamdhad AS. Integrated terrestrial weed management and generation of valuable products in a circular bioeconomy. Biomass, Biofuels, Biochemicals, 2022 Amsterdsam Elsevier 41-64
28.
Gnanavel I, Natarajan SK. Parthenium hysterophorus L.: a major threat to natural and agro eco-systems in India. Int J Agric, Environ Biotechnol, 2013, 6(2): 261-269
29.
Lakshmi C, Srinivas CR. Parthenium: a wide angle view. Indian J Dermatol Venereol Leprol, 2007, 1(73): 296
30.
Asha Kumari J, Rama Chandra Prasad P, Reddy KB. Competitive exclusion of Parthenium hysterophorus by other invasive species-a case study from Andhra Pradesh, India. Taiwania, 2010, 55(2): 128-138
31.
Khan H, Marwat KB, Hassan G, Khan MA. Chemical control of Parthenium hysterophorus L. at different growth stages in non-cropped area. Pakistan J Bot, 2012, 44(5): 1721-1726
32.
Kelaniyangoda DB, Ekanayake HM. Puccinia melampodii Diet and Holow as a biological control agent of Parthenium hysterophorus. J Food Agric, 2010,
33.
Bashar HK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, Rahaman F. A mystic weed, Parthenium hysterophorus: threats, potentials and management. Agronomy, 2021, 11(8): 1514
34.
Ratnaparkhe S, Ratnaparkhe MB. Pant D, Bhatia SK, Patel AK, Giri A. Parthenium hysterophorus: weed to value. Bioremediation using weeds. Energy, environment, and sustainability, 2021 Singapore Springer 79-96,
35.
Mersie W, Alemayehu L, Strathie L, McConnachie A, Terefe S, Negeri M, Zewdie K. Host range evaluation of the leaf-feeding beetle, Zygogramma bicolorata and the stem-boring weevil, Listronotus setosipennis demonstrates their suitability for biological control of the invasive weed, Parthenium hysterophorus in Ethiopia. Biocontrol Sci Tech, 2019, 29(3): 239-251
36.
Tanveer A, Khaliq A, Ali HH, Mahajan G, Chauhan BS. Interference and management of parthenium: the world’s most important invasive weed. Crop Prot, 2015, 1(68): 49-59
37.
Palma-Bautista C, Portugal J, Vázquez-García JG, Osuna MD, Torra J, Lozano-Juste J, Gherekhloo J, De Prado R. Tribenuron-methyl metabolism and the rare Pro197Phe double mutation together with 2, 4-D metabolism and reduced absorption can evolve in Papaver rhoeas with multiple and cross herbicide resistance to ALS inhibitors and auxin mimics. Pestic Biochem Physiol, 2022, 1(188)
38.
Namasivayam SK, Pandian UK, Chava V, Bharani RA, Kavisri M, Moovendhan M. Chitosan nanocomposite as an effective carrier of potential herbicidal metabolites for noteworthy phytotoxic effect against major aquatic invasive weed water hyacinth (Eichhornia crassipes). Int J Biol Macromol, 2023, 31(226): 1597-1610
39.
Kausar T, Jabeen K, Javaid A, Iqbal S. Herbicidal efficacy of culture filtrates of Alternaria brassicicola and Alternaria gaisen against parthenium weed. Adv Weed Sci, 2022, 9: 40
40.
Bezuneh TT. Phytochemistry and antimicrobial activity of Parthenium hysterophorus L.: a review. Sci J Anal Chem, 2015, 3(3): 30
41.
Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms, 2021, 9(10): 2041, pmcid: 8541629
42.
Sivakumar M, Surendar S, Jayakumar M, Seedevi P, Sivasankar P, Ravikumar M, Anbazhagan M, Murugan T, Siddiqui SS, Loganathan S. Parthenium hysterophorus mediated synthesis of silver nanoparticles and its evaluation of antibacterial and antineoplastic activity to combat liver cancer cells. J Cluster Sci, 2021, 32: 167-177
43.
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green synthesis of silver nanoparticles using Parthenium hysterophorus: optimization, characterization and in vitro therapeutic evaluation. Molecules, 2020, 25(15): 3324, pmcid: 7435648
44.
Seedevi P. Chemical characterization and biological activity of leaf extract from Parthenium hysterophorous. Biomass Convers Biorefin, 2023, 31: 1-9
45.
Pandey AK, Mishra AK, Mishra A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol (Noisy-le-grand), 2012, 58(1): 142-147,
46.
Vinson JA, Liang X, Proch J, Hontz BA, Dancel J, Sandone N. Buslig BS, Manthey JA. Polyphenol antioxidants in citrus juices: in vitro and in vivo studies relevant to heart disease. Flavonoids in cell function, 2002 Boston Springer,
47.
Ahmad N, Fazal H, Abbasi BH, Farooq S. Efficient free radical scavenging activity of Ginkgo biloba, Stevia rebaudiana and Parthenium hysterophorous leaves through DPPH (2, 2-diphenyl-1-picrylhydrazyl). Int J Phytomed, 2010, 2(3): 231-239
48.
Priya V, Radhika S. Evaluation of invitro free radical scavenging sctivity of different organic extracts of Parthenium hysterophorus leaves. Int J Pharm Pharm Sci, 2011, 3: 135-138
49.
?akmak?? S, Topda? EF, Kal?n P, Han H, ?ekerci P, K?se LP, Gül?in ?. Antioxidant capacity and functionality of oleaster (E laeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int J Food Sci Technol, 2015, 50: 472-481
50.
Ahmad J, Bagheri R, Bashir H, Baig MA, Al-Huqail A, Ibrahim MM, Qureshi MI. Organ-specific phytochemical profiling and antioxidant analysis of Parthenium hysterophorus L. Biomed Res Int, 2018, 20: 2018
51.
Iqbal J, Khan AA, Aziz T, Ali W, Ahmad S, Rahman SU, Iqbal Z, Dablool AS, Alruways MW, Almalki AA, Alamri AS. Phytochemical investigation, antioxidant properties and in vivo evaluation of the toxic effects of Parthenium hysterophorus. Molecules, 2022, 27(13): 4189, pmcid: 9268705
52.
Alfaro Jiménez MA, Zugasti Cruz A, Silva Belmares SY, Ascacio Valdés JA, Sierra Rivera CA. Phytochemical and biological characterization of the fractions of the aqueous and ethanolic extracts of Parthenium hysterophorus. Separations, 2022, 9(11): 359
53.
Adhikari P, Lee YH, Poudel A, Lee G, Hong SH, Park YS. Predicting the impact of climate change on the habitat distribution of Parthenium hysterophorus around the world and in South Korea. Biology, 2023, 12(1): 84, pmcid: 9855788
54.
Pandey K, Sharma PK, Dudhe R. Anticancer activity of Parthenium hysterophorus Linn and oldenlandia corymbosa Lam by SRB method. Sci Rep, 2012, 1(6): 1-3
55.
Panwar R, Sharma AK, Dutt D, Pruthi V. Phenolic acids from Parthenium hysterophorus: evaluation of bioconversion potential as free radical scavengers and anticancer agents. Adv Biosci Biotechnol, 2015, 6(01): 11
56.
Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci, 2014, 7(2): 163-173
57.
Swati G, Haldar S, Shubhaneel N, Ganguly A, Chatterjee PK. Kinetic study of the acid hydrolysis of Parthenium hysterophorus L. for xylose yield in the production of lignocellulosic ethanol. J Pharm Biol Sci, 2012, 3(3): 35-41
58.
Kavitha S, Kannah RY, Kasthuri S, Gunasekaran M, Pugazhendi A, Rene ER, Pant D, Kumar G, Banu JR. Profitable biomethane production from delignified rice straw biomass: the effect of lignin, energy and economic analysis. Green Chem, 2020, 22(22): 8024-8035
59.
Aggarwal NK, Kumar N, Mittal M. Potential of weed biomass for bioethanol production. Bioethanol production: past and present, 2022 Cham Springer International Publishing 65-71
60.
Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, Nain L. Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol, 2014, 30: 55-64,
61.
Kumar N, Mittal M, Aggarwal NK, Yadav A. Evaluation of autoclave assisted sulfuric-acid-catalyzed pretreatments for the liberation of reducing sugars from Parthenium hysterophorus: a response surface approach. Int J Sustain Energ, 2022, 41(10): 1591-1603
62.
Kumar N, Mittal M, Yadav A, Saini DK, Aggarwal NK. Statistical optimization of enzymatic saccharification of sodium hydroxide pretreated Parthenium hysterophorus biomass using response surface methodology. J Wood Chem Technol, 2022, 7: 1-2
63.
Kumar N, Saharan V, Yadav A, Aggarwal NK. Ultrasound-assisted alkaline pretreatment of Parthenium hysterophorus for fermentable sugar production using a response surface approach. Sustain Chem Clim Action, 2023, 4
64.
Singh S, Khanna S, Moholkar VS, Goyal A. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Appl Energy, 2014, 15(129): 195-206
65.
Kumar N, Sharma R, Saharan V, Yadav A, Aggarwal NK. Enhanced Xylanolytic enzyme production from Parthenium hysterophorus through assessment of the RSM tool and their application in saccharification of lignocellulosic biomass. 3 Biotech, 2023, 13(12): 1-3
66.
Su T, Zhao D, Khodadadi M, Len C. Lignocellulosic biomass for bioethanol: recent advances, technology trends, and barriers to industrial development. Curr Opin Green Sustain Chem, 2020, 1(24): 56-60
67.
Santos JI, Martín-Sampedro R, Fillat ú, Oliva JM, Negro MJ, Ballesteros M, Eugenio ME, Ibarra D. Evaluating lignin-rich residues from biochemical ethanol production of wheat straw and olive tree pruning by FTIR and 2D-NMR. Int J Polym Sci, 2015, 1: 2015
68.
Singh S, Agarwal M, Bhatt A, Goyal A, Moholkar VS. Ultrasound enhanced enzymatic hydrolysis of Parthenium hysterophorus: a mechanistic investigation. Biores Technol, 2015, 1(192): 636-645
69.
Bharadwaja ST, Singh S, Moholkar VS. Design and optimization of a sono-hybrid process for bioethanol production from Parthenium hysterophorus. J Taiwan Inst Chem Eng, 2015, 1(51): 71-78
70.
Yan Q, Wang Y, Rodiahwati W, Spiess A, Modigell M. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw. Bioprocess Biosyst Eng, 2017, 40: 221-229,
71.
Tayyab A, Ahmad Z, Mahmood T, Khalid A, Qadeer S, Mahmood S, Andleeb S, Anjum M. Anaerobic co-digestion of catering food waste utilizing Parthenium hysterophorus as co-substrate for biogas production. Biomass Bioenerg, 2019, 1(124): 74-82
72.
Gusain R, Pandey B, Suthar S. Composting as a sustainable option for managing biomass of aquatic weed Pistia: a biological hazard to aquatic system. J Clean Prod, 2018, 10(177): 803-812
73.
Ahn HK, Smith MC, Kondrad SL, White JW. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass–animal manure mixtures. Appl Biochem Biotechnol, 2010, 160: 965-975,
74.
Abusweireh RS, Rajamohan N, Sonne C, Vasseghian Y. Algae biogas production focusing on operating conditions and conversion mechanisms–a review. Heliyon, 2023, pmcid: 10336526
75.
Abusweireh RS, Rajamohan N, Vasseghian Y. Enhanced production of biodiesel using nanomaterials: a detailed review on the mechanism and influencing factors. Fuel, 2022, 319
76.
Infanzón-Rodríguez MI, Ragazzo-Sánchez JA, Del Moral S, Calderón-Santoyo M, Gutiérrez-Rivera B, Aguilar-Uscanga MG. Optimization of cellulase production by Aspergillus niger ITV 02 from sweet Sorghum bagasse in submerged culture using a Box-Behnken design. Sugar Tech, 2020, 22(2): 266-273
77.
Saini A, Aggarwal NK, Yadav A. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. 3 Biotech, 2017, 7: 1-1
78.
Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green synthesis of silver nanoparticles: a review. Green Sustain Chem, 2016, 6(1): 34-56
79.
Agarwal H, Kumar SV, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resour-Eff Technol, 2017, 3(4): 406-413
80.
Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev, 2018, 1(81): 536-551
81.
Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett, 2021, 19: 355-374
82.
Muthuvel A, Jothibas M, Manoharan C. Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol Environ Eng, 2020, 5: 1-9
83.
Kamaraj M, Srinivasan NR, Assefa G, Adugna AT, Kebede M. Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: extended application in tannery industrial wastewater. Environ Technol Innov, 2020, 1(17)
84.
Thandapani K, Kathiravan M, Namasivayam E, Padiksan IA, Natesan G, Tiwari M, Giovanni B, Perumal V. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO 2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res, 2018, 25: 10328-10339
85.
Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K, Datta JK. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pacific J Trop Dis, 2014, 1(4): S204-S210
86.
Ajmal M, Rao RA, Ahmad R, Khan MA. Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd (II) from wastewater. J Hazard Mater, 2006, 135(1–3): 242-248,
87.
Lata H, Garg VK, Gupta RK. Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorus L.. J Hazard Mater, 2008, 157(2–3): 503-509,
88.
Khaket TP, Aggarwal H, Jodha D, Dhanda S, Singh J. Parthenium hysterophorus in current scenario: a toxic weed with industrial, agricultural and medicinal applications. J Plant Sci, 2015, 10(2): 42
89.
Shinde UG, Metkar SK, Bodkhe RL, Khosare GY, Harke SN. Potential of polyphenol oxidases of Parthenium hysterophorus, Alternanthera sessilis and Jotrapha curcas for simultaneous degradation of two textiles dyes: yellow 5G and brown R. Trends Biotechnol Res, 2012, 1(1): 24-28
90.
Khan R, Fulekar MH. Photocatalytic degradation of a textile dye reactive red 31 using phyto-synthesized titanium nanoparticles under solar irradiation. Desalin Water Treat, 2015, 56(9): 2438-2446
91.
Murthy RK, Raveendra HR, Manjunatha RT. Effect of Chromolaena and Parthenium as green manure and their compost on yield, uptake and nutrient use efficiency on typic Paleustalf. Eur Biol Sci, 2010, 4(1): 41-45
92.
Kishor P, Ghosh AK, Surendra S, Maurya BR. Potential use of Parthenium (Parthenium hysterophorus L.) in agriculture. Asian J Agric Res, 2010, 4(4): 220-225
93.
Khaket TP, Singh M, Dhanda S, Singh T, Singh J. Biochemical characterization of consortium compost of toxic weeds Parthenium hysterophorus and Eichhornia crassipe. Biores Technol, 2012, 1(123): 360-365

Accesses

Citations

Detail

Sections
Recommended

/