1. | Wolf DE, Hoffman CH, Aldrich PE, et al.. β-Hydroxy-β-methyl-δ-valerolactone (divalonic acid), a new biological factor. J Am Chem Soc, 1956, 78: 4499, |
2. | Tamura G. Hiochic acid, a new growth factor for Lactobacillus homohiochi and Lactobacillus heterohiochi. J General Appl Microbiol, 2004, 50(6): 327-330, |
3. | Beck ZQ, Eliot AC, Peres CM, et al. Utilization of phosphoketolase in the production of mevalonate, isoprenoid precursors, and isoprene . Google Patents; 2015. |
4. | Zhang C, Schneiderman DK, Cai T, et al.. Optically active β-methyl-δ-valerolactone: biosynthesis and polymerization. ACS Sustain Chem Eng, 2016, 4(8): 4396-4402, |
5. | Xiong M, Schneiderman DK, Bates FS, et al.. Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci USA, 2014, 111(23): 8357-8362, pmcid: 4060720 |
6. | Liman GLS, Hulko T, Febvre HP, et al.. A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis. Extremophiles, 2019, 23(2): 229-238, |
7. | Tsuruta H, Paddon C, Eng D, et al.. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE, 2009, 4: 4489, |
8. | Tabata K, Hashimoto S. Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnol Lett, 2004, 26(19): 1487-1491, |
9. | Martin VJ, Pitera DJ, Withers ST, et al.. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21(7): 796-802, |
10. | Pitera DJ, Paddon CJ, Newman JD, et al.. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng, 2007, 9(2): 193-207, |
11. | Satowa D, Fujiwara R, Uchio S, et al.. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol Bioeng, 2020, 117(7): 2153-2164, |
12. | Wang J, Niyompanich S, Tai YS, et al.. Engineering of a highly efficient Escherichia coli strain for mevalonate fermentation through chromosomal integration. Appl Environ Microbiol, 2016, 82(24): 7176-7184, pmcid: 5118928 |
13. | Wang Q, Xu J, Sun Z, et al.. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission. Metab Eng, 2019, 51: 79-87, |
14. | Rodriguez S, Denby CM, Van Vu T, et al.. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microbial Cell Fact, 2016, 15(1): 48, |
15. | Bitzenhofer NL, Kruse L, Thies S, et al.. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem, 2021, 65(2): 319-336, pmcid: 8314020 |
16. | Yang J, Im Y, Kim TH, et al. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate [1879-0909 (Electronic)]. |
17. | Moser S, Pichler H. Identifying and engineering the ideal microbial terpenoid production host. Appl Microbiol Biotechnol, 2019, 103(14): 5501-5516, pmcid: 6597603 |
18. | Loeschcke A, Thies S. Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol, 2015, 99(15): 6197-6214, pmcid: 4495716 |
19. | Hernandez-Arranz S, Perez-Gil J, Marshall-Sabey D, et al.. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microbial Cell Fact, 2019, 18(1): 152, |
20. | Shcherbo D, Murphy CS, Ermakova GV, et al.. Far-red fluorescent tags for protein imaging in living tissues. Biochem J, 2009, 418(3): 567-574, |
21. | Duan Y, Zhang X, Zhai W, et al.. Deciphering the rules of ribosome binding site differentiation in context dependence. ACS Synth Biol, 2022, 11(8): 2726-2740, |
22. | Lu S, Zhou C, Guo X, et al.. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism. Microb Biotechnol, 2022, 15(8): 2292-2306, pmcid: 9328733 |
23. | Dudley QM, Anderson KC, Jewett MC. Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth Biol, 2016, 5(12): 1578-1588, pmcid: 6728267 |
24. | Dueber JE, Wu GC, Malmirchegini GR, et al.. Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol, 2009, 27(8): 753-759, |
25. | Liu H, Chen Y, Zhang Y, et al.. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int J Biol Macromol, 2022, 209(Pt A): 117-124, |
26. | Zhang Y, Liu H, Liu Y, et al.. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int J Biol Macromol, 2021, 191: 608-617, |
27. | Wirth NT, Nikel PI. Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis, cis-muconate in engineered Pseudomonas putida. Chem Catal, 2021, 1(6): 1234-1259, pmcid: 8711041 |
28. | Pfleger BF, Pitera DJ, Smolke CD, et al.. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol, 2006, 24(8): 1027-1032, |
29. | Zelcbuch L, Antonovsky N, Bar-Even A, et al.. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucl Acids Res, 2013, 41(9): e98, pmcid: 3643573 |
30. | Xu L, Liu P, Dai Z, et al.. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants. Microb Cell Fact, 2021, 20(1): 148, pmcid: 8317321 |
31. | Jeschek M, Gerngross D, Panke S. Combinatorial pathway optimization for streamlined metabolic engineering. Curr Opin Biotechnol, 2017, 47: 142-151, |
32. | Jeschek M, Gerngross D, Panke S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nat Commun, 2016, 7: 11163, pmcid: 4821882 |
33. | Englund E, Liang F, Lindberg P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep, 2016, 6: 36640, pmcid: 5114575 |
34. | Song AA, Abdullah JO, Abdullah MP, et al.. Overexpressing 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in the lactococcal mevalonate pathway for heterologous plant sesquiterpene production. PLoS ONE, 2012, 7(12): e52444, pmcid: 3530464 |
35. | Wang Y, Jing F, Yu S, et al.. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. J Med Plants Res, 2011, 8: 4 |