Indoles and the advances in their biotechnological production for industrial applications

Lenny Ferrer, Melanie Mindt, Volker F. Wendisch, Katarina Cankar

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 511-527. DOI: 10.1007/s43393-023-00223-x
Review

Indoles and the advances in their biotechnological production for industrial applications

Author information +
History +

Abstract

Indole is a signalling molecule produced both by bacteria and plants. In this review its signalling role between microbes and in particular in the human gut is discussed. Besides the natural roles, indole also has value for flavour and fragrance applications, for example, in food industry or perfumery. Additionally, indole can be derivatized to several halogenated and oxygenated compounds that can be used as natural colourants or have promising bioactivity with therapeutic potential to treat human diseases. Indole is traditionally obtained from coal tar. Biocatalytic approaches have been developed to convert indole into halogenated and oxygenated derivatives. This review will discuss recent advances in production of indole from glucose or tryptophan by fermentation and the production of derived halogenated and oxygenated derivatives by microbial cell factories.

Keywords

Indole / Indigoids / Biological role / Bioactives / Microbial cell factories

Cite this article

Download citation ▾
Lenny Ferrer, Melanie Mindt, Volker F. Wendisch, Katarina Cankar. Indoles and the advances in their biotechnological production for industrial applications. Systems Microbiology and Biomanufacturing, 2023, 4(2): 511‒527 https://doi.org/10.1007/s43393-023-00223-x

References

[1.]
Taber DF, Tirunahari PK. Indole synthesis: a review and proposed classification. Tetrahedron, 2011, 67: 7195-7210.
CrossRef Google scholar
[2.]
Neubauer PR, Widmann C, Wibberg D, Schroder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N. A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS ONE, 2018, 13: e0196797.
CrossRef Google scholar
[3.]
Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol, 2018, 14: 256-261.
CrossRef Google scholar
[4.]
Zhang J, Hansen LG, Gudich O, Viehrig K, Lassen LMM, Schrubbers L, Adhikari KB, Rubaszka P, Carrasquer-Alvarez E, Chen L, D'Ambrosio V, Lehka B, Haidar AK, Nallapareddy S, Giannakou K, Laloux M, Arsovska D, Jorgensen MAK, Chan LJG, Kristensen M, Christensen HB, Sudarsan S, Stander EA, Baidoo E, Petzold CJ, Wulff T, O'Connor SE, Courdavault V, Jensen MK, Keasling JD. A microbial supply chain for production of the anti-cancer drug vinblastine. Nature, 2022, 609: 341-347.
CrossRef Google scholar
[5.]
Weisskopf L, Schulz S, Garbeva P. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol, 2021, 19: 391-404.
CrossRef Google scholar
[6.]
Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev, 2010, 34: 426-444.
CrossRef Google scholar
[7.]
Zarkan A, Liu J, Matuszewska M, Gaimster H, Summers DK. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol, 2020, 28: 566-577.
CrossRef Google scholar
[8.]
Baca-DeLancey RR, South MM, Ding X, Rather PN. Escherichia coli genes regulated by cell-to-cell signaling. Proc Natl Acad Sci USA, 1999, 96: 4610-4614.
CrossRef Google scholar
[9.]
Wang DD, Ding XD, Rather PN. Indole can act as an extracellular signal in Escherichia coli. J Bacteriol, 2001, 183: 4210-4216.
CrossRef Google scholar
[10.]
Chattoraj DK. Tryptophanase in sRNA control of the Escherichia coli cell cycle. Mol Microbiol, 2007, 63: 1-3.
CrossRef Google scholar
[11.]
Chant EL, Summers DK. Indole signalling contributes to the stable maintenance of Escherichia coli multicopy plasmids. Mol Microbiol, 2007, 63: 35-43.
CrossRef Google scholar
[12.]
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res, 2018, 208: 12-24.
CrossRef Google scholar
[13.]
Chimerel C, Field CM, Pinero-Fernandez S, Keyser UF, Summers DK. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim Biophys Acta, 2012, 1818: 1590-1594.
CrossRef Google scholar
[14.]
Sakai M, Tohyama K, Mutai M. Effect of indole on adenylate energy charge and mitochondrial phosphorylative activity of rat liver. Int J Biochem, 1982, 14: 569-572.
CrossRef Google scholar
[15.]
Vega NM, Allison KR, Khalil AS, Collins JJ. Signaling-mediated bacterial persister formation. Nat Chem Biol, 2012, 8: 431-433.
CrossRef Google scholar
[16.]
Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol, 2015, 17: 1275-1285.
CrossRef Google scholar
[17.]
Lee JH, Kim YG, Gwon G, Wood TK, Lee J. Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express, 2016, 6: 123.
CrossRef Google scholar
[18.]
Lang M, Krin E, Korlowski C, Sismeiro O, Varet H, Coppee JY, Mazel D, Baharoglu Z. Sleeping ribosomes: bacterial signaling triggers RaiA mediated persistence to aminoglycosides. iScience, 2021, 24: 103128.
CrossRef Google scholar
[19.]
Song S, Wood TK. Combatting persister cells with substituted indoles. Front Microbiol, 2020, 11: 1565.
CrossRef Google scholar
[20.]
Zhang W, Yamasaki R, Song S, Wood TK. Interkingdom signal indole inhibits Pseudomonas aeruginosa persister cell waking. J Appl Microbiol, 2019, 127: 1768-1775.
CrossRef Google scholar
[21.]
Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg, 1993, 218: 111-119.
CrossRef Google scholar
[22.]
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol, 2016, 14: 563-575.
CrossRef Google scholar
[23.]
Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: clinical relevance—development, composition and regulation—therapeutical strategies. Microb Cell, 2021, 8: 28-56.
CrossRef Google scholar
[24.]
Lee JT, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol, 2007, 7: 42.
CrossRef Google scholar
[25.]
Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol, 2015, 23: 707-718.
CrossRef Google scholar
[26.]
Hu M, Zhang C, Mu Y, Shen Q, Feng Y. Indole affects biofilm formation in bacteria. Indian J Microbiol, 2010, 50: 362-368.
CrossRef Google scholar
[27.]
Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips RS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol, 2003, 49: 443-449.
CrossRef Google scholar
[28.]
Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol, 2006, 72: 2449-2459.
CrossRef Google scholar
[29.]
Zhang XS, Garcia-Contreras R, Wood TK. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol, 2007, 189: 3051-3062.
CrossRef Google scholar
[30.]
Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol, 2007, 73: 4100-4109.
CrossRef Google scholar
[31.]
Lee J, Zhang XS, Hegde M, Bentley WE, Jayaraman A, Wood TK. Indole cell signaling occurs primarily at low temperatures in Escherichia coli. Isme J, 2008, 2: 1007-1023.
CrossRef Google scholar
[32.]
Hashidoko Y, Kim D. Bidirectional cell-cell communication via indole and cyclo(Pro-Tyr) modulates interspecies biofilm formation. Appl Environ Microbiol, 2021, 87: e0127721.
CrossRef Google scholar
[33.]
Cui B, Chen X, Guo Q, Song S, Wang M, Liu J, Deng Y. The cell-cell communication signal indole controls the physiology and interspecies communication of Acinetobacter baumannii. Microbiol Spectr, 2022, 10: e0102722.
CrossRef Google scholar
[34.]
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N Group WHOPPLW Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis, 2018, 18: 318-327.
CrossRef Google scholar
[35.]
Bawn M, Alikhan NF, Thilliez G, Kirkwood M, Wheeler NE, Petrovska L, Dallman TJ, Adriaenssens EM, Hall N, Kingsley RA. Evolution of Salmonella enterica serotype typhimurium driven by anthropogenic selection and niche adaptation. PLoS Genet, 2020, 16: e1008850.
CrossRef Google scholar
[36.]
Kohli N, Crisp Z, Riordan R, Li M, Alaniz RC, Jayaraman A. The microbiota metabolite indole inhibits Salmonella virulence: involvement of the PhoPQ two-component system. PLoS ONE, 2018, 13: e0190613.
CrossRef Google scholar
[37.]
Nikaido E, Giraud E, Baucheron S, Yamasaki S, Wiedemann A, Okamoto K, Takagi T, Yamaguchi A, Cloeckaert A, Nishino K. Effects of indole on drug resistance and virulence of Salmonella enterica serovar typhimurium revealed by genome-wide analyses. Gut Pathog, 2012, 4: 5.
CrossRef Google scholar
[38.]
Darkoh C, Plants-Paris K, Bishoff D, DuPont HL. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule. Systems, 2019.
CrossRef Google scholar
[39.]
Darkoh C, Chappell C, Gonzales C, Okhuysen P. A rapid and specific method for the detection of indole in complex biological samples. Appl Environ Microbiol, 2015, 81: 8093-8097.
CrossRef Google scholar
[40.]
Wu D, Yi X, Tang R, Feng C, Wei C. Single microbial fuel cell reactor for coking wastewater treatment: simultaneous carbon and nitrogen removal with zero alkaline consumption. Sci Total Environ, 2018, 621: 497-506.
CrossRef Google scholar
[41.]
Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole: advances and perspectives. Front Microbiol, 2018, 9: 2625.
CrossRef Google scholar
[42.]
Walters M, Sperandio V. Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol, 2006, 296: 125-131.
CrossRef Google scholar
[43.]
Gostner JM, Geisler S, Stonig M, Mair L, Sperner-Unterweger B, Fuchs D. Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle. Neuropsychobiology, 2020, 79: 89-99.
CrossRef Google scholar
[44.]
Whitfield-Cargile CM, Cohen ND, Chapkin RS, Weeks BR, Davidson LA, Goldsby JS, Hunt CL, Steinmeyer SH, Menon R, Suchodolski JS, Jayaraman A, Alaniz RC. The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microbes, 2016, 7: 246-261.
CrossRef Google scholar
[45.]
Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA, 2010, 107: 228-233.
CrossRef Google scholar
[46.]
Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. Indole-3-pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J Immunol, 2018, 201: 3683-3693.
CrossRef Google scholar
[47.]
Ihekweazu FD, Engevik MA, Ruan W, Shi Z, Fultz R, Engevik KA, Chang-Graham AL, Freeborn J, Park ES, Venable S, Horvath TD, Haidacher SJ, Haag AM, Goodwin A, Schady DA, Hyser JM, Spinler JK, Liu Y, Versalovic J. Bacteroides ovatus promotes IL-22 production and reduces trinitrobenzene sulfonic acid-driven colonic inflammation. Am J Pathol, 2021, 191: 704-719.
CrossRef Google scholar
[48.]
Ehrlich AM, Pacheco AR, Henrick BM, Taft D, Xu GG, Huda MN, Mishchuk D, Goodson ML, Slupsky C, Barile D, Lebrilla CB, Stephensen CB, Mills DA, Raybould HE. Indole-3-lactic acid associated with bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol, 2020, 20: 357.
CrossRef Google scholar
[49.]
Wlodarska M, Luo C, Kolde R, d'Hennezel E, Annand JW, Heim CE, Krastel P, Schmitt EK, Omar AS, Creasey EA, Garner AL, Mohammadi S, O'Connell DJ, Abubucker S, Arthur TD, Franzosa EA, Huttenhower C, Murphy LO, Haiser HJ, Vlamakis H, Porter JA, Xavier RJ. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe, 2017, 22: e6.
CrossRef Google scholar
[50.]
Ye X, Li H, Anjum K, Zhong X, Miao S, Zheng G, Liu W, Li L. Dual role of indoles derived from intestinal microbiota on human health. Front Immunol, 2022, 13: 903526.
CrossRef Google scholar
[51.]
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9: 3294.
CrossRef Google scholar
[52.]
Karlin DA, Mastromarino AJ, Jones RD, Stroehlein JR, Lorentz O. Fecal skatole and indole and breath methane and hydrogen in patients with large bowel polyps or cancer. J Cancer Res Clin Oncol, 1985, 109: 135-141.
CrossRef Google scholar
[53.]
Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity, 2009, 31: 401-411.
CrossRef Google scholar
[54.]
Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol, 2018, 53: 465-474.
CrossRef Google scholar
[55.]
Mar JS, Ota N, Pokorzynski ND, Peng Y, Jaochico A, Sangaraju D, Skippington E, Lekkerkerker AN, Rothenberg ME, Tan MW, Yi T, Keir ME. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans. Microbiome, 2023, 11: 47.
CrossRef Google scholar
[56.]
van der Bruggen T, Nijenhuis S, van Raaij E, Verhoef J, van Asbeck BS. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the RAF1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun, 1999, 67: 3824-3829.
CrossRef Google scholar
[57.]
Sweet MJ, Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol, 1996, 60: 8-26.
CrossRef Google scholar
[58.]
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv, 2019, 37: 68-90.
CrossRef Google scholar
[59.]
Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol, 2004, 2: 123-140.
CrossRef Google scholar
[60.]
Torres AG, Kaper JB. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect Immun, 2003, 71: 4985-4995.
CrossRef Google scholar
[61.]
Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun, 2007, 75: 4597-4607.
CrossRef Google scholar
[62.]
NicAogain K, O'Byrne CP. The role of stress and stress adaptations in determining the fate of the bacterial pathogen listeria monocytogenes in the food chain. Front Microbiol, 2016, 7: 1865.
CrossRef Google scholar
[63.]
Rattanaphan P, Mittraparp-Arthorn P, Srinoun K, Vuddhakul V, Tansila N. Indole signaling decreases biofilm formation and related virulence of Listeria monocytogenes.. FEMS Microbiol Lett, 2020.
CrossRef Google scholar
[64.]
Song S, Gong T, Yamasaki R, Kim JS, Wood TK. Identification of a potent indigoid persister antimicrobial by screening dormant cells. Biotechnol Bioeng, 2019, 116: 2263-2274.
CrossRef Google scholar
[65.]
Sun FQ, Bian MM, Li ZY, Lv BY, Gao YY, Wang Y, Fu XM. 5-Methylindole potentiates aminoglycoside against gram-positive bacteria including Staphylococcus aureus persisters under hypoionic conditions. Front Cell Infect Mi, 2020, 10: 84.
CrossRef Google scholar
[66.]
Megaw J, Gilmore BF. Archaeal persisters: persister cell formation as a stress response in Haloferax volcanii. Front Microbiol, 2017, 8: 1589.
CrossRef Google scholar
[67.]
Sun P, Huang Y, Yang X, Liao A, Wu J. The role of indole derivative in the growth of plants: a review. Front Plant Sci, 2022, 13: 1120613.
CrossRef Google scholar
[68.]
Busi R, Goggin DE, Heap IM, Horak MJ, Jugulam M, Masters RA, Napier RM, Riar DS, Satchivi NM, Torra J, Westra P, Wright TR. Weed resistance to synthetic auxin herbicides. Pest Manag Sci, 2018, 74: 2265-2276.
CrossRef Google scholar
[69.]
Zhao Y. Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol, 2010, 61: 49-64.
CrossRef Google scholar
[70.]
Wang X, Luo MJ, Wang YX, Han WQ, Miu JX, Luo XP, Zhang AD, Kuang Y. Design, synthesis, and herbicidal activity of indole-3-carboxylic acid derivatives as potential transport inhibitor response 1 antagonists. Front Chem, 2022, 10: 975267.
CrossRef Google scholar
[71.]
Grossmann K. Mediation of herbicide effects by hormone interactions. J Plant Growth Regul, 2003, 22: 109-122.
CrossRef Google scholar
[72.]
Xie J, Xu W, Song H, Liu Y, Zhang J, Wang Q. Synthesis and antiviral/fungicidal/insecticidal activities study of novel chiral indole diketopiperazine derivatives containing acylhydrazone moiety. J Agric Food Chem, 2020, 68: 5555-5571.
CrossRef Google scholar
[73.]
Zheng SJ, Jiang QJ, Massande GN, Wu WB, Lin CS, Fang Y, Tan Y, Zhu R. Synthesis and antifungal activity of indole derivatives. Chem Nat Compd, 2023, 59: 111-118.
CrossRef Google scholar
[74.]
Böckler F, Dill B, Eisenbrand G, Faupel F, Fugmann B, Gamse T, Matissek R, Pohnert G, Rühling A, Schmidt S, Sprenger G. RÖMPP, 2023 Stuttgart Georg Thieme Verlag
[75.]
Edris AE, Chizzola R, Franz C. Isolation and characterization of the volatile aroma compounds from the concrete headspace and the absolute of Jasminum sambac (L.) Ait. (Oleaceae) flowers grown in Egypt. Eur Food Res Technol, 2008, 226: 621-626.
CrossRef Google scholar
[76.]
Mookherjee BD, Trenkle RW, Wilson RA. Live vs. dead. Part II. A comparative analysis of the headspace volatiles of some important fragrance and flavor raw materials. J Essent Oil Res, 1989, 1: 85-90.
CrossRef Google scholar
[77.]
[78.]
Feierfeil J, Magauer T. De novo synthesis of benzannelated heterocycles. Chemistry, 2018, 24: 1455-1458.
CrossRef Google scholar
[79.]
Humphrey GR, Kuethe JT. Practical methodologies for the synthesis of indoles. Chem Rev, 2006, 106: 2875-2911.
CrossRef Google scholar
[80.]
Larock RC, Yum EK, Refvik MD. Synthesis of 2,3-disubstituted indoles via palladium-catalyzed annulation of internal alkynes. J Org Chem, 1998, 63: 7652-7662.
CrossRef Google scholar
[81.]
Sahu S, Banerjee A, Kundu S, Bhattacharyya A, Maji MS. Synthesis of functionalized indoles via cascade benzannulation strategies: a decade's overview. Org Biomol Chem, 2022, 20: 3029-3042.
CrossRef Google scholar
[82.]
Nasri S, Bayat M, Miankooshki FR, Samet NH. Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Mol Divers, 2022, 26: 3411-3445.
CrossRef Google scholar
[83.]
Wu Y, Wang T, Zhang C, Xing XH. A rapid and specific colorimetric method for free tryptophan quantification. Talanta, 2018, 176: 604-609.
CrossRef Google scholar
[84.]
Fabara AN, Fraaije MW. An overview of microbial indigo-forming enzymes. Appl Microbiol Biotechnol, 2020, 104: 925-933.
CrossRef Google scholar
[85.]
Medici R, Garaycoechea JI, Dettorre LA, Iribarren AM, Lewkowicz ES. Biocatalysed halogenation of nucleobase analogues. Biotechnol Lett, 2011, 33: 1999-2003.
CrossRef Google scholar
[86.]
Domergue J, Erdmann D, Fossey-Jouenne A, Petit JL, Debard A, de Berardinis V, Vergne-Vaxelaire C, Zaparucha A. XszenFHal, a novel tryptophan 5-halogenase from Xenorhabdus szentirmaii. AMB Express, 2019, 9: 175.
CrossRef Google scholar
[87.]
Bradley SA, Zhang J, Jensen MK. Deploying microbial synthesis for halogenating and diversifying medicinal alkaloid scaffolds. Front Bioeng Biotechnol, 2020, 8: 594126.
CrossRef Google scholar
[88.]
Ismail M, Frese M, Patschkowski T, Ortseifen V, Niehaus K, Sewald N. Flavin-dependent halogenases from Xanthomonas campestris pv. campestris B100 prefer bromination over chlorination. Adv Synth Catal, 2019, 361: 2475-2486.
CrossRef Google scholar
[89.]
Adak S, Lukowski AL, Schafer RJB, Moore BS. From tryptophan to toxin: nature's convergent biosynthetic strategy to aetokthonotoxin. J Am Chem Soc, 2022, 144: 2861-2866.
CrossRef Google scholar
[90.]
Li G, Young KD. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology (Reading), 2013, 159: 402-410.
CrossRef Google scholar
[91.]
Mindt M, Beyraghdar Kashkooli A, Suarez-Diez M, Ferrer L, Jilg T, Bosch D, Martins Dos Santos V, Wendisch VF, Cankar K. Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microb Cell Fact, 2022, 21: 45.
CrossRef Google scholar
[92.]
Wolf S, Becker J, Tsuge Y, Kawaguchi H, Kondo A, Marienhagen J, Bott M, Wendisch VF, Wittmann C. Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem, 2021, 65: 197-212.
CrossRef Google scholar
[93.]
Cankar K, Henke NA, Wendisch VF. Functional food additives/ingredients production by engineered Corynebacterium glutamicum. SMAB, 2022, 3:110-121.
[94.]
Kerbs A, Burgardt A, Veldmann KH, Schaffer T, Lee JH, Wendisch VF. Fermentative production of halogenated tryptophan derivatives with Corynebacterium glutamicum overexpressing tryptophanase or decarboxylase genes. ChemBioChem, 2022, 23.
CrossRef Google scholar
[95.]
Mindt M, Ferrer L, Bosch D, Cankar K, Wendisch VF. De novo tryptophanase-based indole production by metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2023, 107: 1621-1634.
CrossRef Google scholar
[96.]
Ferrer L, Mindt M, Suarez-Diez M, Jilg T, Zagorscak M, Lee JH, Gruden K, Wendisch VF, Cankar K. Fermentative indole production via bacterial tryptophan synthase alpha subunit and plant indole-3-glycerol phosphate lyase enzymes. J Agric Food Chem, 2022, 70: 5634-5645.
CrossRef Google scholar
[97.]
Hyde CC, Ahmed SA, Padlan EA, Miles EW, Davies DR. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J Biol Chem, 1988, 263: 17857-17871.
CrossRef Google scholar
[98.]
Xiao SJ, Wang Z, Wang BX, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan LX, Zhang JM. Expanding the application of tryptophan: industrial biomanufacturing of tryptophan derivatives. Front Microbiol, 2023.
CrossRef Google scholar
[99.]
Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 1983, 222: 167-169.
CrossRef Google scholar
[100.]
Murdock D, Ensley BD, Serdar C, Thalen M. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology (NY), 1993, 11: 381-386.
CrossRef Google scholar
[101.]
Berry A, Dodge TC, Pepsin M, Weyler W. Application of metabolic engineering to improve both the production and use of biotech indigo. J Ind Microbiol Biotechnol, 2002, 28: 127-133.
CrossRef Google scholar
[102.]
Han GH, Bang SE, Babu BK, Chang M, Shin HJ, Kim SW. Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process Biochem, 2011, 46: 788-791.
CrossRef Google scholar
[103.]
Fabara AN, Fraaije MW. Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme. Enzyme Microb Technol, 2020, 142: 109692.
CrossRef Google scholar
[104.]
Han GH, Gim GH, Kim W, Seo SI, Kim SW. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. J Biotechnol, 2012, 164: 179-187.
CrossRef Google scholar
[105.]
Du J, Yang D, Luo ZW, Lee SY. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J Biotechnol, 2018, 267: 19-28.
CrossRef Google scholar
[106.]
Lee J, Kim J, Song JE, Song WS, Kim EJ, Kim YG, Jeong HJ, Kim HR, Choi KY, Kim BG. Production of tyrian purple indigoid dye from tryptophan in Escherichia coli. Nat Chem Biol, 2021, 17: 104-112.
CrossRef Google scholar
[107.]
Lee J, Kim J, Kim H, Park H, Kim JY, Kim EJ, Yang YH, Choi KY, Kim BG. Constructing multi-enzymatic cascade reactions for selective production of 6-bromoindirubin from tryptophan in Escherichia coli. Biotechnol Bioeng, 2022, 119: 2938-2949.
CrossRef Google scholar
[108.]
Veldmann KH, Dachwitz S, Risse JM, Lee JH, Sewald N, Wendisch VF. Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front Bioeng Biotechnol, 2019, 7: 219.
CrossRef Google scholar
[109.]
Veldmann KH, Minges H, Sewald N, Lee JH, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol, 2019, 291: 7-16.
CrossRef Google scholar
[110.]
Bradley SA, Lehka BJ, Hansson FG, Adhikari KB, Rago D, Rubaszka P, Haidar AK, Chen L, Hansen LG, Gudich O, Giannakou K, Lengger B, Gill RT, Nakamura Y, de Bernonville TD, Koudounas K, Romero-Suarez D, Ding L, Qiao Y, Frimurer TM, Petersen AA, Besseau S, Kumar S, Gautron N, Melin C, Marc J, Jeanneau R, O'Connor SE, Courdavault V, Keasling JD, Zhang J, Jensen MK. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast. Nat Chem Biol, 2023.
CrossRef Google scholar
[111.]
Devi N, Kaur K, Biharee A, Jaitak V. Recent development in indole derivatives as anticancer agent: a mechanistic approach. Anticancer Agents Med Chem, 2021, 21: 1802-1824.
CrossRef Google scholar
[112.]
Emert BL, Cote CJ, Torre EA, Dardani IP, Jiang CL, Jain N, Shaffer SM, Raj A. Variability within rare cell states enables multiple paths toward drug resistance. Nat Biotechnol, 2021, 39: 865-876.
CrossRef Google scholar
[113.]
Ishikawa E, Kanai S, Sue M. Detection of a novel intramolecular rearrangement during gramine biosynthesis in barley using stable isotope-labeled tryptophan. Biochem Biophys Rep, 2023, 34: 101439.
CrossRef Google scholar
[114.]
Cohen JD, Tang Q, Hegeman AD. Using targeted metabolomics to elucidate the indole auxin network in plants. Methods Enzymol, 2022, 676: 239-278.
CrossRef Google scholar
[115.]
Ahmad S, Mohammed M, Mekala LP, Anusha R, Sasikala C, Ramana CV. Stable isotope-assisted metabolite profiling reveals new insights into L-tryptophan chemotrophic metabolism of Rubrivivax benzoatilyticus. World J Microbiol Biotechnol, 2023, 39: 98.
CrossRef Google scholar
[116.]
Mishiro K, Nishii R, Sawazaki I, Sofuku T, Fuchigami T, Sudo H, Effendi N, Makino A, Kiyono Y, Shiba K, Taki J, Kinuya S, Ogawa K. Development of radiohalogenated osimertinib derivatives as imaging probes for companion diagnostics of osimertinib. J Med Chem, 2022, 65: 1835-1847.
CrossRef Google scholar
[117.]
Nanga RPR, Elliott MA, Swain A, Wilson N, Swago S, Soni ND, Witschey WR, Reddy R. Identification of L-tryptophan by down-field (1) H MRS: a precursor for brain NAD(+) and serotonin syntheses. Magn Reson Med, 2022, 88: 2371-2377.
CrossRef Google scholar
[118.]
Jeschke P. The unique role of halogen substituents in the design of modern agrochemicals. Pest Manag Sci, 2010, 66: 10-27.
CrossRef Google scholar
[119.]
Zhang N, Hasenstein KH. Halogenated auxins affect microtubules and root elongation in Lactuca sativa. J Plant Growth Regul, 2000, 19: 397-405.
CrossRef Google scholar
[120.]
Rajasekharan SK, Lee JH, Ravichandran V, Kim JC, Park JG, Lee J. Nematicidal and insecticidal activities of halogenated indoles. Sci Rep, 2019, 9: 2010.
CrossRef Google scholar
[121.]
Pavlopoulos GA, Baltoumas FA, Liu S, Selvitopi O, Camargo AP, Nayfach S, Azad A, Roux S, Call L, Ivanova NN, Chen IM, Paez-Espino D, Karatzas E, Iliopoulos I, Konstantinidis K, Tiedje JM, Pett-Ridge J, Baker D, Visel A, Ouzounis CA, Ovchinnikov S, Buluc A, Kyrpides NC. Unraveling the functional dark matter through global metagenomics. Nature, 2023, 622: 594-602.
CrossRef Google scholar
[122.]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596: 583-589.
CrossRef Google scholar
[123.]
Kroll A, Ranjan S, Engqvist MKM, Lercher MJ. A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nat Commun, 2023, 14: 2787.
CrossRef Google scholar
[124.]
Buller AR, Brinkmann-Chen S, Romney DK, Herger M, Murciano-Calles J, Arnold FH. Directed evolution of the tryptophan synthase beta-subunit for stand-alone function recapitulates allosteric activation. Proc Natl Acad Sci USA, 2015, 112: 14599-14604.
CrossRef Google scholar
[125.]
Ferrer L, Elsaraf M, Mindt M, Wendisch VF. l-Serine biosensor-controlled fermentative production of l-tryptophan derivatives by Corynebacterium glutamicum. Biology (Basel), 2022.
CrossRef Google scholar
[126.]
Sun L, Alper HS. Non-conventional hosts for the production of fuels and chemicals. Curr Opin Chem Biol, 2020, 59: 15-22.
CrossRef Google scholar
[127.]
Tenhaef N, Stella R, Frunzke J, Noack S. Automated rational strain construction based on high-throughput conjugation. ACS Synth Biol, 2021, 10: 589-599.
CrossRef Google scholar
[128.]
Janzen NH, Striedner G, Jarmer J, Voigtmann M, Abad S, Reinisch D. Implementation of a fully automated microbial cultivation platform for strain and process screening. Biotechnol J, 2019, 14: e1800625.
CrossRef Google scholar
[129.]
Helleckes LM, Puchta D, Czech H, Morschett H, Geinitz B, Wiechert W, Oldiges M. From frozen cell bank to product assay: high-throughput strain characterisation for autonomous Design-Build-Test-Learn cycles. Microb Cell Fact, 2023, 22: 130.
CrossRef Google scholar
[130.]
Sassi H, Nguyen TM, Telek S, Gosset G, Grunberger A, Delvigne F. Segregostat: a novel concept to control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microb Biotechnol, 2019, 12: 1064-1075.
CrossRef Google scholar
Funding
NWO(053.80.732); CoBioTech ERA(722361); Renewable Resources Scheme FNR(22023517); Universit?t Bielefeld (3146)

Accesses

Citations

Detail

Sections
Recommended

/