Efficient production of (2R, 3R)-butanediol from xylose by an engineered Serratia marcescens

Tingting Sun1, Di Liu1, Linmeng Zhang1, Taiping Fan2, Yujie Cai1,e()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 820-830. DOI: 10.1007/s43393-023-00219-7
Original Article

Efficient production of (2R, 3R)-butanediol from xylose by an engineered Serratia marcescens

  • Tingting Sun1, Di Liu1, Linmeng Zhang1, Taiping Fan2, Yujie Cai1,e()
Author information +
History +

Abstract

(2R,3R)-BDO is an important bio-based four-carbon platform compound and widely used in chemical, food, pharmaceutical, fuel and aerospace fields. Serratia marcescens has been shown to be an effective strain for producing BDO. However, there have been few reports on the metabolic engineering of this strain to efficiently produce (2R,3R)-BDO using xylose. In this study, the endogenous strong promoter was screened and modified, and combined with the screened RBS. (2R,3R)-BDO was successfully produced by combining the selected promoters and RBS with the overexpressed key enzymes (ALS, ALSD, BDH, GLF) of (2R,3R)-BDO production. The optimum fermentation temperature and pH were 37 ℃ and 6.0, respectively, and the optimized yield reached 6.0 g/L. After batch fermentation, the (2R,3R)-BDO yield reached 36.6 g/L. This provided a good idea for efficient production of (2R,3R)-BDO from xylose.

Keywords

(2R,3R)-BDO / Serratia marcescens / Promoter modification / Overexpressed / Batch fermentation

Cite this article

Download citation ▾
Tingting Sun, Di Liu, Linmeng Zhang, Taiping Fan, Yujie Cai. Efficient production of (2R, 3R)-butanediol from xylose by an engineered Serratia marcescens. Systems Microbiology and Biomanufacturing, 2023, 4(2): 820‒830 https://doi.org/10.1007/s43393-023-00219-7

References

1.
Harden A. 2,3-Butylene glycol fermentation by Aerobacter aerogenes. Proc R Soc B, 1906, 77: 399-405
2.
Bartowsky EJ, Henschke PA. The 'buttery' attribute of wine–diacetyl–desirability, spoilage and beyond. Int J Food Microbiol, 2004, 96: 235-252,
3.
Xiu ZL, Zeng AP. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol, 2008, 78: 917-926,
4.
Celinska E, Grajek W. Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv, 2009, 27: 715-725,
5.
Yan Y, Lee CC, Liao JC. Enantioselective synthesis of pure (R, R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem, 2009, 7: 3914-3917,
6.
Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P. Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresour Technol, 2012, 115: 111-116,
7.
Celinska E, Grajek W. Biotechnological production of 2,3-butanediol-Current state and prospects. Biotechnol Adv, 2009, 27: 715-725,
8.
Zeng AP, Biebl H, Deckwer WD. Production of 2,3-Butanediol in a Membrane Bioreactor with Cell Recycle. Appl Microbiol Biotechnol, 1991, 34: 463-468,
9.
Wong CL, Huang CC, Lu WB, Chen WM, Chang JS. Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp Zmd30 strain. Biochem Eng J, 2012, 69: 32-40,
10.
Li LX, Li K, Wang K, Chen C, Gao C, Ma CQ, Xu P. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol, 2014, 170: 256-261,
11.
Kou MY, Cui ZZ, Fu J, Dai W, Wang ZW, Chen T. Metabolic engineering of Corynebacterium glutamicum for efficient production of optically pure (2R,3R)-2,3-butanediol. Microb Cell Fact., 2022, 21: 150, pmcid: 9310479
12.
Syu MJ. Biological production of 2,3-butanediol. Appl Microbiol Biotechnol, 2001, 55: 10-18,
13.
Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J. Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol, 2010, 101: 1961-1967,
14.
Rao B, Zhang LY, Sun JA, Su G, Wei DZ, Chu J, Zhu JW, Shen YL. Characterization and regulation of the 2,3-butanediol pathway in Serratia marcescens. Appl Microbiol Biotechnol, 2012, 93: 2147-2159,
15.
Ha SJ, Kim SR, Kim H, Du J, Cate JHD, Jin YS. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour Technol, 2013, 149: 525-531,
16.
Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM, Lukyanov S, Zaraisky AG, Davidson MW, Chudakov DM. Far-red fluorescent tags for protein imaging in living tissues. Biochemical Journal, 2009, 418: 567-574,
17.
Kurgan G, Onyeabor M, Holland SC, Taylor E, Schneider A, Kurgan L, Billings T, Wang X. Directed evolution of Zymomonas mobilis sugar facilitator Glf to overcome glucose inhibition. J Indust Microbiol Biotechnol., 2022, 49(2): kuab066,
18.
Zhao FJ, Liu XS, Kong A, Zhao YX, Fan X, Ma T, Gao WX, Wang SF, Yang C. Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in Pseudomonas mendocina NK-01. Sci Rep., 2019, 9(1): 1798, pmcid: 6372614
19.
Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng, 2013, 19: 98-106,
20.
Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol Adv, 2011, 29: 351-364,
21.
Maina, S., Prabhu, A. A., Vivek, N., Vlysidis, A., Koutinas, A., and Kumar, V. (2022) Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 54.
22.
Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, Shen Y. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol, 2015, 42: 779-786,
23.
Blazeck J, Alper HS. Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J, 2013, 8: 46-58,
24.
Liu X, Yang H, Zheng J, Ye Y, Pan L. Identification of strong promoters based on the transcriptome of Bacillus licheniformis. Biotechnol Lett, 2017, 39: 873-881,
25.
Hammer K, Mijakovic I, Jensen PR. Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol, 2006, 24: 53-55,
26.
Phan TT, Nguyen HD, Schumann W. Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol, 2012, 157: 167-172,
27.
Johnson AO, Gonzalez-Villanueva M, Tee KL, Wong TS. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16. ACS Synth Biol, 2018, 7: 1918-1928,
28.
Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ. Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res, 1997, 6: 143-156,
29.
Yang TW, Rao ZM, Zhang X, Xu MJ, Xu ZH, Yang ST. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol, 2017, 37: 990-1005,
30.
Repizo GD, Mortera P, Magni C. Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH. Microbiology, 2011, 157: 2708-2719,
31.
Nan H, Seo SO, Oh EJ, Seo JH, Cate JHD, Jin YS. 2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2014, 98: 5757-5764,
32.
Zhang B, Li XL, Fu J, Li N, Wang ZW, Tang YJ, Chen T. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Plos One., 2016, 11(7), pmcid: 4965033
33.
Jin C, Huang Z, Bao J. High-Titer Glutamic Acid Production from Lignocellulose Using an Engineered Corynebacterium glutamicum with Simultaneous Co-utilization of Xylose and Glucose, ACS Sustainable Chem. Eng, 2020, 8: 6315-6322
34.
Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol, 2007, 98: 3367-3374,
35.
Anderson PJ, McNeil K, Watson K. High-Efficiency Carbohydrate Fermentation to Ethanol at Temperatures above 40 degrees C by Kluyveromyces marxianus var. marxianus Isolated from Sugar Mills. Appl Environ Microbiol, 1986, 51: 1314-1320, pmcid: 239064

Accesses

Citations

Detail

Sections
Recommended

/