Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates

Hye Min Song, Seo Young Jo, Haeyoung Lee, Subeen Jeon, Dohye Yun, Chaerin Kim, Jina Son, Yu Jung Sohn, Jong-Il Choi, Si Jae Park

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 473-499. DOI: 10.1007/s43393-023-00215-x
Review

Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates

Author information +
History +

Abstract

Pseudomonas sp. has been considered one of the most promising microbial platform strains due to its versatile metabolism, enabling the valorization of waste materials into value-added chemical products. As the native producer of polyhydroxyalkanoates (PHAs), the biodegradable biopolyesters, it has been widely engineered by various metabolic engineering tools for the production of PHAs composed of short-chain-length and medium-chain-length monomers with adjustable composition from diverse carbon sources, ranging from pure sugars to crude oils and fatty acids. This review discusses the feasibility of Pseudomonas sp. as the industrial host strain and the recent advances regarding the systems metabolic engineering strategies for PHAs production in Pseudomonas sp.

Keywords

Pseudomonas sp. / Polyhydroxyalkanoates / Systems metabolic engineering / Synthetic biology / Fermentation

Cite this article

Download citation ▾
Hye Min Song, Seo Young Jo, Haeyoung Lee, Subeen Jeon, Dohye Yun, Chaerin Kim, Jina Son, Yu Jung Sohn, Jong-Il Choi, Si Jae Park. Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2023, 4(2): 473‒499 https://doi.org/10.1007/s43393-023-00215-x

References

[1.]
Hunter CM, Caswell H, Runge MC, Regehr EV, Amstrup SC, Stirling I. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology, 2010, 91(10): 2883-2897.
[2.]
Albright EA, Crow D. Beliefs about climate change in the aftermath of extreme flooding. Clim Chang, 2019, 155(1): 1-17.
[3.]
Woodward AJ, Samet JM. Climate change, hurricanes, and health. Am J Public Health, 2018, 108(1): 33-35.
[4.]
Mansoor S, Farooq I, Kachroo MM, Mahmoud AED, Fawzy M, Popescu SM, Alyemeni MN, Sonne C, Rinklebe J, Ahmad P. Elevation in wildfire frequencies with respect to the climate change. J Environ Manag, 2022, 301
[5.]
Tripathy KP, Mukherjee S, Mishra AK, Mann ME, Williams AP. Climate change will accelerate the high-end risk of compound drought and heatwave events. PNAS, 2023, 120(28).
[6.]
Monthly Global Climate Report for Annual 2021. NOAA National Centers for Environmental Information. 2022. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202113. Accessed 16 Oct 2023.
[7.]
Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, 2018 Cambridge Cambridge University Press
[8.]
Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JGJ, Wiedenhofer D, Mattioli G, Khourdajie AA, House J, Pachauri S, Figueroa M, Saheb Y, Slade R, Hubacek K, Sun L, Ribeiro SK, Khennas S, Can SR, Chapungu L, Davis SJ, Bashmakov I, Dai H, Dhakal S, Tan X, Geng Y, Gu B, Minx J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett, 2021, 16(7)
[9.]
Chapungu L, Nhamo G, Chikodzi D, Maoela MA. BRICS and the race to net-zero emissions by 2050: is COVID-19 a barrier or an opportunity?. J Open Innov: Technol Mark Complex, 2022, 8(4): 172
[10.]
Ronaghi M, Scorsone E. The impact of COVID-19 outbreak on CO2 emissions in the ten countries with the highest carbon dioxide emissions. J Environ Public Health, 2023.
CrossRef Google scholar
[11.]
Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers Manag, 2010, 51(7): 1412-1421.
[12.]
Sabale TR, Kulkarni PP, Ghosalkar AR. Methane based continuous culture of Methylosinus trichosporium for production of poly-3-hydroxybutyrate using membrane recycle system. Biotechnol Bioprocess Eng, 2023, 28(4): 519-527.
[13.]
Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y. (Micro) plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod, 2020, 254
[14.]
Chu J, Zhou Y, Cai Y, Wang X, Li C, Liu Q. Life-cycle greenhouse gas emissions and the associated carbon-peak strategies for PS, PVC, and ABS plastics in China. Resour Conserv Recycl, 2022, 182
[15.]
Tang Y, Liu Y, Chen Y, Zhang W, Zhao J, He S, Yang C, Zhang T, Tang C, Zhang C, Yang Z. A review: research progress on microplastic pollutants in aquatic environments. Sci Total Environ, 2021, 766.
[16.]
Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, Rinklebe J, Kim KH, Kirkham MB. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int, 2019, 131.
[17.]
Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ, 2022, 10.
[18.]
Khobragade TP, Pagar AD, Giri P, Sarak S, Jeon H, Joo S, Goh Y, Park BS, Yun H. Biocatalytic cascade for synthesis of sitagliptin intermediate employing coupled transaminase. Biotechnol Bioprocess Eng, 2023, 28(2): 300-309.
[19.]
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: state-of-the-art, challenges, and future trends. Bioresour Technol, 2023, 371.
[20.]
Nikel PI, Chavarría M, Fuhrer T, Sauer U, De Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem, 2015, 290(43): 25920-25932.
[21.]
Nikel PI, Fuhrer T, Chavarría M, Sánchez-Pascuala A, Sauer U, de Lorenzo V. Reconfiguration of metabolic fluxes in Pseudomonas putida as a response to sub-lethal oxidative stress. ISME J, 2021, 15(6): 1751-1766.
[22.]
Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev, 2010, 34(5): 658-684.
[23.]
Nikolaidis M, Mossialos D, Oliver SG, Amoutzias GD. Comparative analysis of the core proteomes among the Pseudomonas major evolutionary groups reveals species-specific adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity, 2020, 12(8): 289
[24.]
Poblete-Castro I, Becker J, Dohnt K, Dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol, 2012, 93: 2279-2290.
[25.]
Chang DE, Shin S, Rhee JS, Pan JG. Acetate metabolism in a pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme A flux for growth and survival. J Bacteriol, 1999, 181(21): 6656-6663.
[26.]
Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab Eng, 2019, 54: 200-211.
[27.]
Basu A, Shrivastava R, Basu B, Apte SK, Phale PS. Modulation of glucose transport causes preferential utilization of aromatic compounds in Pseudomonas putida CSV86. J Bacteriol, 2007, 189: 7556-7562.
[28.]
Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzic M, Shaikh H, Duane G, Gupta V, Tuohy MG, O’Connor KE. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol, 2013, 150: 202-209.
[29.]
Li Y, Qi B, Wan Y. Separation of monosaccharides from pretreatment inhibitors by nanofiltration in lignocellulosic hydrolysate: fouling mitigation by activated carbon adsorption. Biomass Bioenergy, 2020, 136
[30.]
Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol, 2014, 98: 6933-6946.
[31.]
Tan GYA, Chen CL, Ge L, Li L, Tan SN, Wang JY. Bioconversion of styrene to poly (hydroxyalkanoate) (PHA) by the new bacterial strain Pseudomonas putida NBUS12. Microbes Environ, 2015, 30(1): 76-85.
[32.]
Matthay P, Schalck T, Verstraeten N, Michiels J. Strategies to enhance the biosynthesis of monounsaturated fatty acids in Escherichia coli. Biotechnol Bioprocess Eng, 2023, 28(1): 36-50.
[33.]
Bushell ME. Goodfellow M, Williams ST, Mordarski M. Growth, product formation and fermentation technology. Actinomycetes in biotechnology, 1988 London Academic 185-217.
[34.]
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Pro Rep, 2009, 26(11): 1408-1446.
[35.]
Schwanemann T, Otto M, Wierckx N, Wynands B. Pseudomonas as versatile aromatics cell factory. Biotechnol J, 2020, 15(11): 1900569
[36.]
Lieder S, Nikel PI, de Lorenzo V, Takors R. Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Factories, 2015, 14(1): 1-14.
[37.]
Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, Palsson B, Kim SC, Cho BK. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun, 2019, 10(1): 935.
[38.]
Commichau FM, Pietack N, Stülke J. Essential genes in Bacillus subtilis: a re-evaluation after ten years. Mol Biosyst, 2013, 9(6): 1068-1075.
[39.]
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S. Chassis organism from Corynebacterium glutamicum–a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J, 2015, 10(2): 290-301.
[40.]
Shen X, Wang Z, Huang X, Hu H, Wang W, Zhang X. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genom, 2017, 18:1-14.
[41.]
Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories, 2014, 13(1): 1-15.
[42.]
Liang P, Zhang Y, Xu B, Zhao Y, Liu X, Gao W, Ma T, Yang C, Wang S, Liu R. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications. Microb Cell Factories, 2020, 19(1): 1-12.
[43.]
Liu H, Chen Y, Zhang Y, Zhao W, Guo H, Wang S, Liu R, Yang C. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Int J Biol Macromol, 2022, 209: 117-124.
[44.]
Zong QJ, Xu T, Liu H, Xu L, Zhang RK, Li BZ, Liu ZH, Yuan YJ. Microbial valorization of lignin to bioplastic by genome-reduced Pseudomonas putida. Front Microbiol, 2022, 13.
[45.]
Aparicio T, de Lorenzo V, Martínez-García E. Improved thermotolerance of genome-reduced Pseudomonas putida EM42 enables effective functioning of the PL/cI857 system. Biotechnol J, 2019, 14(1): 1800483
[46.]
Turlin J, Dronsella B, De Maria A, Lindner SN, Nikel PI. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Metab Eng, 2002, 74:191-205.
[47.]
Fan X, Zhang Y, Zhao F, Liu Y, Zhao Y, Wang S, Liu R, Yang C. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol, 2020, 163: 2023-2031.
[48.]
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol, 2023, 50(1): kuac023.
[49.]
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng, 2019, 56: 1-16.
[50.]
Kumar M, You S, Beiyuan J, Luo G, Gupta J, Kumar S, Singh L, Zhang S, Tsang DC. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Bioresour Technol, 2021, 320.
[51.]
Rosini E, Molinari F, Miani D, Pollegioni L. Lignin valorization: production of high value-added compounds by engineered microorganisms. Catalysts, 2023, 13(3): 555
[52.]
Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR. Opportunities and challenges in biological lignin valorization. COBIOT, 2016, 42:40-53.
[53.]
Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K, Jiménez-Díaz MR, Eng T, Radi MS, Simmons BA, Mukhopadhyay A, Herrgård MJ, Singer SW, Beckham GT, Feist AM. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metab Eng Commun, 2020, 11.
[54.]
Mueller J, Willett H, Feist AM, Niu W. Engineering Pseudomonas putida for improved utilization of syringyl aromatics. Biotechnol Bioeng, 2022, 119(9): 2541-2550.
[55.]
Lim HG, Eng T, Banerjee D, Alarcon G, Lau AK, Park MR, Simmons BA, Palsson BO, Singer SW, Mukhopadhyay A, Feist AM. Generation of Pseudomonas putida KT2440 strains with efficient utilization of xylose and galactose via adaptive laboratory evolution. ACS Sustain Chem Eng, 2021, 9(34): 11512-11523.
[56.]
Igeño MI, Macias D, Blasco R. A case of adaptive laboratory evolution (ALE): biodegradation of furfural by Pseudomonas pseudoalcaligenes CECT 5344. Genes, 2019, 10(7): 499.
[57.]
Xie W, Ye L, Lv X, Xu H, Yu H. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng, 2015, 28: 8-18.
[58.]
Duzenli OF, Okay S. Promoter engineering for the recombinant protein production in prokaryotic systems. AIMS Bioeng, 2020, 7(2): 62-81.
[59.]
Cook TB, Rand JM, Nurani W, Courtney DK, Liu SA, Pfleger BF. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol, 2018, 45(7): 517-527.
[60.]
Li J, Ye BC. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid. Bioresour Technol, 2021, 319.
[61.]
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, Duuren JBJH, Wittmann C. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng, 2018, 47: 279-293.
[62.]
Huo K, Liu Y, Huang R, Zhang Y, Liu H, Che Y, Yang C. Development of a novel promoter engineering-based strategy for creating an efficient para-nitrophenol-mineralizing bacterium. J Hazard Mater, 2022, 424.
[63.]
Pham NN, Chen CY, Li H, Nguyen MTT, Nguyen PKP, Nguyen PKP, Tsai SL, Chou JY, Ramli TC, Hu YC. Engineering stable Pseudomonas putida S12 by CRISPR for 2, 5-furandicarboxylic acid (FDCA) production. ACS Synth Biol, 2020, 9(5): 1138-1149.
[64.]
Chalklen T, Jing Q, Kar-Narayan S. Biosensors based on mechanical and electrical detection techniques. Sensors, 2020, 20(19): 5605.
[65.]
Ko YS, Kim JW, Lee JA, Han T, Kim GB, Park JE, Lee SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev, 2020, 49(14): 4615-4636.
[66.]
Zheng X, Gao S, Wu J, Hu X. Recent advances in aptamer-based biosensors for detection of Pseudomonas aeruginosa. Front Microbiol, 2020, 11.
[67.]
Nguyen TKC, Tran NP, Cavin JF. Genetic and biochemical analysis of PadR-padC promoter interactions during the phenolic acid stress response in Bacillus subtilis 168. J Bacteriol, 2011, 193(16): 4180-4191.
[68.]
Li J, Yue C, Wei W, Shang Y, Zhang P, Ye BC. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Bioresour Technol, 2022, 344.
[69.]
Jha RK, Bingen JM, Johnson CW, Kern TL, Khanna P, Trettel DS, Strauss CEM, Beckham GT, Dale T. A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab Eng Commun, 2018, 6: 33-38.
[70.]
Pereira JR, Araújo D, Freitas P, Marques AC, Alves VD, Sevrin C, Freitas F. Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: cultivation on fruit pulp waste and polymer characterization. Int J Biol Macromol, 2021, 167: 85-92.
[71.]
Matsusaki H, Manji S, Taguchi K, Kato M, Fukui T, Doi Y. Cloning and molecular analysis of the poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61–3. J Bacteriol, 1998, 180(24): 6459-6467.
[72.]
Choi TR, Park YL, Song HS, Lee SM, Park SL, Lee HS, Kim HJ, Bhatia SK, Gurav R, Choi KY, Lee YK, Yang YH. Fructose-based production of short-chain-length and medium-chain-length polyhydroxyalkanoate copolymer by arctic Pseudomonas sp. B14–6. Polymers, 2021, 13(9): 1398.
[73.]
Jiménez JI, Nogales J, García JL, Díaz E. Timmis KN. A genomic view of the catabolism of aromatic compounds in Pseudomonas. Handbook of hydrocarbon and lipid microbiology, 2010 Berlin Springer 1297-1325.
[74.]
Manoli MT, Tarazona N, Mato A, Maestro B, Sanz JM, Nogales J, Prieto MA. Molecular basis of medium-chain length-PHA metabolism of Pseudomonas putida. The handbook of polyhydroxyalkanoates, 2020 CRC Press 89-114.
[75.]
Tran KNT, Kumaravel A, Hong SH. Impact of the synthetic Scaffold strategy on the metabolic pathway engineering. Biotechnol Bioprocess Eng, 2023, 28:379-385.
[76.]
Piotrowski JS, Zhang Y, Bates DM, Keating DH, Sato TK, Ong IM, Landick R. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol, 2014, 5: 90.
[77.]
Zhang Y, Liu H, Liu Y, Huo K, Wang S, Liu R, Yang C. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Int J Biol Macromol, 2021, 191: 608-617.
[78.]
Christensen M, Jablonski P, Altermark B, Irgum K, Hansen H. High natural PHA production from acetate in Cobetia sp. MC34 and Cobetia marina DSM 4741T and in silico analyses of the genus specific PhaC2 polymerase variant. Microb Cell Factories, 2021, 20(1): 1-23.
[79.]
Yoon J, Bae J, Kang S, Cho BK, Oh MK. Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. Bioresour Technol, 2022, 353.
[80.]
Zhang S, Yang W, Chen H, Liu B, Lin B, Tao Y. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microb Cell Factories, 2019, 18:1-11.
[81.]
Yang S, Li S, Jia X. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. J Ind Microbiol Biotechnol, 2019, 46(6): 793-800.
[82.]
Zhou Y, Lin L, Wang H, Zhang Z, Zhou J, Jiao N. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Commun Biol, 2020, 3(1): 98.
[83.]
Mückschel B, Simon O, Klebensberger J, Graf N, Rosche B, Altenbuchner J, Pfannstiel J, Huber A, Hauer B. Ethylene glycol metabolism by Pseudomonas putida. Appl Envion Microbiol, 2012, 78(24): 8531-8539.
[84.]
Franden MA, Jayakody LN, Li WJ, Wagner NJ, Cleveland NS, Michener WE, Hauer B, Blank LM, Wierckx N, Klebensberger J, Beckham GT. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metab Eng, 2018, 48: 197-207.
[85.]
Sheel A, Pant D. Varjani S, Gnansounou E, Gurunathan B, Pant D, Zakaria Z. Microbial depolymerization. Waste bioremediation. Energy, environment, and sustainability, 2018 Singapore Springer 61-103.
[86.]
Mahajan N, Gupta P. New insights into the microbial degradation of polyurethanes. RSC Adv, 2015, 5(52): 41839-41854.
[87.]
Parke D, Garcia MA, Ornston LN. Cloning and genetic characterization of dca genes required for β-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1. Appl Environ Microbiol, 2001, 67(10): 4817-4827.
[88.]
Ackermann YS, Li WJ, de Hipt LO, Niehoff PJ, Casey W, Polen T, Köbbing S, Ballerstedt H, Wynands B, O'Connor K, Blank LM, Wierckx N. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng, 2021, 67: 29-40.
[89.]
Zhu Y, Ai M, Jia X. Optimization of a two-species microbial consortium for improved mcl-PHA production from glucose–xylose mixtures. Front Bioeng Biotechnol, 2022, 9.
[90.]
Nguyen LT, Tran MH, Lee EY. Co-upgrading of ethanol-assisted depolymerized lignin: a new biological lignin valorization approach for the production of protocatechuic acid and polyhydroxyalkanoic acid. Bioresour Technol, 2021, 338.
[91.]
Borrero-de Acuña JM, Gutierrez-Urrutia I, Hidalgo-Dumont C, Aravena-Carrasco C, Orellana-Saez M, Palominos-Gonzalez N, Poblete-Castro I. Channelling carbon flux through the meta-cleavage route for improved poly (3-hydroxyalkanoate) production from benzoate and lignin-based aromatics in Pseudomonas putida H. Microb Biotechnol, 2021, 14(6): 2385-2402.
[92.]
Löwe H, Sinner P, Kremling A, Pflüger-Grau K. Engineering sucrose metabolism in Pseudomonas putida highlights the importance of porins. Microb Biotechnol, 2020, 13(1): 97-106.
[93.]
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front Bioeng Biotechnol, 2020, 7: 480.
[94.]
Ling C, Peabody GL, Salvachúa D, Kim YM, Kneucker CM, Calvey CH, Monninger MA, Munoz NM, Poirier BC, Ramirez KJ, John PCS, Woodworth SP, Magnuson JK, Burnum-Johnson KE, Guss AM, Johnson CW, Beckham GT. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering. Nat Commun, 2022, 13(1): 4925.
[95.]
Elmore JR, Dexter GN, Salvachúa D, O'Brien M, Klingeman DM, Gorday K, Michener JK, Peterson DJ, Beckham GT, Guss AM. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metab Eng, 2020, 62: 62-71.
[96.]
Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61–3. Appl Microbiol Biotechnol, 2000, 53: 401-409.
[97.]
Li HL, Deng RX, Wang W, Liu KQ, Hu HB, Huang XQ, Zhang XH. Biosynthesis and characterization of medium-chain-length polyhydroxyalkanoate with an enriched 3-Hydroxydodecanoate monomer from a Pseudomonas chlororaphis cell factory. J Agric Food Chem, 2021, 69(13): 3895-3903.
[98.]
Wang Y, Chung A, Chen GQ. Synthesis of medium-chain-length polyhydroxyalkanoate homopolymers, random copolymers, and block copolymers by an engineered strain of Pseudomonas entomophila. Adv Health Mater, 2017, 6(7): 1601017
[99.]
Li M, Chen X, Che X, Zhang H, Wu LP, Du H, Chen GQ. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab Eng, 2019, 52: 253-262.
[100.]
Tripathi L, Wu LP, Chen J, Chen GQ. Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442. Microb Cell Factories, 2012, 11(1): 1-11.
[101.]
Tran TT, Charles TC. Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida. PLoS ONE, 2020, 15(3).
[102.]
Liu CH, Chen HY, Chen YLL, Sheu DS. The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short-and medium-chain-length PHA. Enzyme Microb, 2021, 143:109719-109719.
[103.]
Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett, 2006, 234(2): 231-237.
[104.]
Yang TH, Jung YK, Kang HO. Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl Microbiol Biotechnol, 2011, 90: 603-614.
[105.]
Matsumoto KI, Arai Y, Nagao R, Murata T, Takase K, Nakashita H, Doi Y. Synthesis of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymers in peroxisome of the transgenic Arabidopsis thaliana harboring the PHA synthase gene from Pseudomonas sp. 61–3. J Polym Environ, 2006, 14(4): 369-374.
[106.]
Polyhydroxyalkanoates (PHA) Market by type (Short chain length, Medium chain length), production methods (Sugar Fermentation, Vegetable Oil Fermentation), application (Packaging & Food Services, Biomedical), and Region – Global Forecast to 2028. Markets and Markets. 2023. https://www.marketsandmarkets.com/Market-Reports/pha-market-395.html. Accessed 16 Oct 2023.
[107.]
Market size value of plastics worldwide from 2021 to 2030. Statista. 2023. https://www.statista.com/statistics/1060583/global-market-value-of-plastic/. Accessed 16 Oct 2023.
[108.]
Alcântara JMG, Distante F, Storti G, Moscatelli D, Morbidelli M, Sponchioni M. Current trends in the production of biodegradable bioplastics: the case of polyhydroxyalkanoates. Biotechnol Adv, 2020, 42
[109.]
Choi SY, Rhie MN, Kim HT, Joo JC, Cho IJ, Son J, Jo SY, Sohn YJ, Baritugo AK, Lee SY, Park SJ. Metabolic engineering for the synthesis of polyesters: a 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng, 2020, 58: 47-81.
[110.]
Gahlawat G, Kumari P, Bhagat NR. Technological advances in the production of polyhydroxyalkanoate biopolymers. Curr Sustain/Renew, 2020, 7:73-83.
[111.]
Pacini H, Shi G, Sanches-Pereira A, da Silva Filho AC. Network analysis of international trade in plastic scrap. Sustain Prod, 2021, 27:203-216.
[112.]
Kellerhals MB, Kessler B, Witholt B, Tchouboukov A, Brandl H. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules, 2000, 33(13): 4690-4698.
[113.]
Panaksri A, Tanadchangsaeng N. Fractionation of medium-chain-length polyhydroxyalkanoate biosynthesized by pilot-scale production for improving material properties. Polym Degrad Stab, 2023, 213
[114.]
Follonier S, Riesen R, Zinn M. Pilot-scale production of functionalized mcl-PHA from grape pomace supplemented with fatty acids. Chem Biochem Eng Q, 2015, 9(2): 113-121.
[115.]
Blunt W, Gaugler M, Collet C, Sparling R, Gapes DJ, Levin DB, Cicek N. Rheological behavior of high cell density Pseudomonas putida LS46 cultures during production of medium chain length polyhydroxyalkanoate (PHA) polymers. Bioeng, 2019, 6(4): 93
[116.]
Guarnieri MT, Franden MA, Johnson CW, Beckham GT. Conversion and assimilation of furfural and 5-(hydroxymethyl) furfural by Pseudomonas putida KT2440. Metab Eng Commun, 2017, 4: 22-28.
[117.]
Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Li J, Kim DH. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environ Sci Technol, 2020, 54(11): 6987-6996.
[118.]
Narancic T, Salvador M, Hughes GM, Beagan N, Abdulmutalib U, Kenny ST, Wu H, Saccomanno M, Um J, O’Connor KE, Jimenez JI. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates. Microb Biotechnol, 2021, 4(6): 2463-2480.
[119.]
Seo MJ, Yun SD, Kim HW, Yeom SJ. Polyethylene-biodegrading microbes and their future directions. Biotechnol Bioprocess Eng, 2023.
CrossRef Google scholar
[120.]
Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos VAPM, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzappple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisl J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhöft A, Tümmler B, Fraser C. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol, 2002, 4(12): 799-808.
[121.]
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol, 2020, 22(1): 255-269.
[122.]
Dahal S, Renz A, Dräger A, Yang L. Genome-scale model of Pseudomonas aeruginosa metabolism unveils virulence and drug potentiation. Commun Biol, 2023, 6(1): 165.
[123.]
Rebocho AT, Pereira JR, Freitas F, Neves LA, Alves VD, Sevrin C, Reis MA. Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl Food Biotechnol, 2019, 6(1): 71-82.
[124.]
Ramírez-Morales JE, Czichowski P, Besirlioglu V, Regestein L, Rabaey K, Blank LM, Rosenbaum MA. Lignin aromatics to PHA polymers: nitrogen and oxygen are the key factors for Pseudomonas. ACS Sustain Chem Eng, 2021, 9(31): 10579-10590.
[125.]
Marsudi S, Unno H, Hori K. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol, 2008, 78(6): 955-961.
[126.]
Impallomeni G, Ballistreri A, Carnemolla GM, Guglielmino SP, Nicolò MS, Cambria MG. Synthesis and characterization of poly (3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Int J Biol Macromol, 2011, 48(1): 137-145.
[127.]
Walsh M, O’Connor K, Babu R, Woods T, Kenny S. Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis. Chem Biochem Eng Q, 2015, 29(2): 123-133.
[128.]
Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH. Effect of nitrogen limitation on long-side-chain poly-beta-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol, 1992, 58(2): 744-746.
[129.]
Bustamante D, Tortajada M, Ramon D, Rojas A. Camelina oil as a promising substrate for mcl-PHA production in Pseudomonas sp. cultures. Appl Food Biotechnol, 2019, 6(1): 61-70.
[130.]
Song JH, Jeon CO, Choi MH, Yoon SC, Park W. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol, 2008, 18(8): 1408-1415.
[131.]
Pereira JR, Araujo D, Marques AC, Neves LA, Grandfils C, Sevrin C, Freitas F. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int J Biol Macromol, 2019, 122: 1144-1151.
[132.]
de Meneses L, Pereira JR, Sevrin C, Grandfils C, Paiva A, Reis MA, Freitas F. Pseudomonas chlororaphis as a multiproduct platform: conversion of glycerol into high-value biopolymers and phenazines. N Biotechnol, 2020, 55: 84-90.
[133.]
Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Koller M. Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol, 2013, 165(1): 45-51.
[134.]
Cerrone F, Davis R, Kenny ST, Woods T, O’Donovan A, Gupta VK, O’Connor K. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour Technol, 2015, 191: 45-52.
[135.]
Sharma PK, Munir RI, de Kievit T, Levin DB. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can J Microbiol, 2017, 63(12): 1009-1024.
[136.]
Muhr A, Rechberger EM, Salerno A, Reiterer A, Schiller M, Kwiecień M, Koller M. Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React Funct Polym, 2013, 73(10): 1391-1398.
[137.]
Tan GYA, Chen CL, Li L, Ge L, Wang L, Razaad IMN, Wang JY. Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers, 2014, 6(3): 706-754.
[138.]
Jeon JM, Park SJ, Son YS, Yang YH, Yoon JJ. Bioconversion of mixed alkanes to polyhydroxyalkanoate by Pseudomonas resinovornas: upcycling of pyrolysis oil from waste-plastic. Polymers, 2022, 14(13): 2624.
[139.]
Kacanski M, Knoll L, Nussbaumer M, Neureiter M, Drosg B. Anaerobic acidification of pressed sugar beet pulp for mcl-polyhydroxyalkanoates fermentation. Process Biochem, 2023, 131:235-243.
[140.]
Blunt W, Dartiailh C, Sparling R, Gapes DJ, Levin DB, Cicek N. Development of high cell density cultivation strategies for improved medium chain length polyhydroxyalkanoate productivity using Pseudomonas putida LS46. Bioeng, 2019, 6(4): 89
[141.]
Mohammad SH, Bhukya B. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440. Bioresour Technol, 2022, 363: 128001-128001.
[142.]
Gumel AM, Annuar MSM, Heidelberg T. Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PLoS ONE, 2012, 7(9): 1-8.
[143.]
Fernández D, Rodríguez E, Bassas M, Viñas M, Solanas AM, Llorens J, Manresa A. Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J, 2005, 26(2–3): 159-167.
[144.]
Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, Beckham GT. Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci, 2014, 111(33): 12013-12018.
[145.]
Lee SY, Wong HH, Choi JI, Lee SH, Lee SC, Han CS. Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng, 2000, 68(4): 466-470.
[146.]
Sathiyanarayanan G, Bhatia SK, Song HS, Jeon JM, Kim J, Lee YK, Yang YH. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol, 2017, 100(97): 710-720.
[147.]
Wang X, Lin L, Dong J, Ling J, Wang W, Wang H, Yu X. Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl Environ Microbiol, 2018, 84(18): e01469-e1518.
[148.]
Borrero-de Acuña JM, Rohde M, Saldias C, Poblete-Castro I. Fed-batch mcl-polyhydroxyalkanoates production in Pseudomonas putida KT2440 and Δ phaZ mutant on biodiesel-derived crude glycerol. Front Bioeng Biotechnol, 2021, 9: 642023-642023.
[149.]
Mozejko-Ciesielska J, Dabrowska D, Szalewska-Palasz A, Ciesielski S. Medium-chain-length polyhydroxyalkanoates synthesis by Pseudomonas putida KT2440 relA/spoT mutant: bioprocess characterization and transcriptome analysis. AMB Express, 2017, 7(1): 1-13.
[150.]
Borrero-de Acuña JM, Aravena-Carrasco C, Gutierrez-Urrutia I, Duchens D, Poblete-Castro I. Enhanced synthesis of medium-chain-length poly (3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem, 2019, 77:23-30.
[151.]
Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Poblete-Castro I. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Factories, 2014, 13:1-15.
[152.]
Liu CH, Chen HY, Chen YLL, Sheu DS. The polyhydroxyalkanoate (PHA) synthase 1 of Pseudomonas sp. H9 synthesized a 3-hydroxybutyrate-dominant hybrid of short-and medium-chain-length PHA. Enzyme Microb, 2021, 143
[153.]
Zhao F, He F, Liu X, Shi J, Liang J, Wang S, Liu R. Metabolic engineering of Pseudomonas mendocina NK-01 for enhanced production of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Int J Biol Macromol, 2020, 154: 1596-1605.
[154.]
Wang HH, Zhou XR, Liu Q, Chen GQ. Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol, 2011, 89(5): 1497-1507.
[155.]
Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng, 2011, 13(1): 11-17.
[156.]
Wang Q, Tappel RC, Zhu C, Nomura CT. Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol, 2012, 78(2): 519-527.
[157.]
Agnew DE, Stevermer AK, Youngquist JT, Pfleger BF. Engineering Escherichia coli for production of C12–C14 polyhydroxyalkanoate from glucose. Metab Eng, 2012, 14(6): 705-713.
[158.]
Ren Q, Sierro N, Witholt B, Kessler B. FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J Bacteriol, 2000, 182(10): 2978-2981.
[159.]
Qi Q, Steinbüchel A, Rehm BH. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol Lett, 1988, 167(1): 89-94.
[160.]
Park SJ, Lee SY. Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol, 2003, 185(18): 5391-5397.
[161.]
Araceli FS, Berenice VP, Fermin PG. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase. J Biotechnol, 2022, 349: 25-31.
[162.]
Flores-Sánchez A, Rathinasabapathy A, López-Cuellar MDR, Vergara-Porras B, Pérez-Guevara F. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expressipotf fadE and phaJ genes in Cupriavidus necator. Int J Biol Macromol, 2020, 164: 1600-1607.
[163.]
Zhuo XZ, Chou SC, Li SY. Producing medium-chain-length polyhydroxyalkanoate from diverse feedstocks by deregulating unsaturated fatty acid biosynthesis in Escherichia coli. Bioresour Technol, 2022, 365.
[164.]
Davis R, Anilkumar PK, Chandrashekar A, Shamala TR. Biosynthesis of polyhydroxyalkanoates co-polymer in E. coli using genes from Pseudomonas and Bacillus. Antonie Leeuwenhoek, 2008, 94(2): 207-216.
[165.]
Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SY. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol, 2012, 93: 273-283.
[166.]
Park SJ, Lee SH, Oh YH, Lee SY. MaoC mediated biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli from fatty acid. KSBB J, 2014, 29(4): 244-249.
[167.]
Park SJ, Lee SH, Oh YH, Lee SY. Establishment of a biosynthesis pathway for (R)-3-hydroxyalkanoates in recombinant Escherichia coli. Korean J Chem Eng, 2015, 32:702-706.
Funding
Ministry of Science and ICT, South Korea(NRF-2022M3J5A1056072)

Accesses

Citations

Detail

Sections
Recommended

/