1. | Vuilleumier S, et al.. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE, 2009, 4(5), pmcid: 2680597 |
2. | Samanta D, et al.. Chandra R, Sobti RC, et al.. 12 Methane monooxygenases. Microbes for sustainable development and bioremediation, 2019 Boca Raton CRC Press 187, |
3. | Morris SA, et al.. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol, 2002, 68(3): 1446-1453, pmcid: 123758 |
4. | Rostkowski KH, Pfluger AR, Criddle CS. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Biores Technol, 2013, 132: 71-77 |
5. | Mai DHA, Nguyen TT, Lee EY. The ethylmalonyl-CoA pathway for methane-based biorefineries: a case study of using Methylosinus trichosporium OB3b, an alpha-proteobacterial methanotroph, for producing 2-hydroxyisobutyric acid and 1, 3-butanediol from methane. Green Chem, 2021, 23(19): 7712-7723 |
6. | Nguyen AD, Kim D, Lee EY. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. BMC Genom, 2019, 20(1): 1-16 |
7. | Stein LY, et al.. Genome sequence of the obligate methanotroph Methylosinus trichosporium strain OB3b. J Bacteriol, 2010, 192(24): 6497-6498, pmcid: 3008524 |
8. | Karigar CS, Rao SS. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res., 2011, 2011, pmcid: 3168789 |
9. | Bago B, et al.. Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol, 1999, 121(1): 263-272, pmcid: 59376 |
10. | Kim HW, et al.. Genome sequence of a thermoacidophilic methanotroph belonging to the verrucomicrobiota phylum from geothermal hot springs in yellowstone national park: a metagenomic assembly and reconstruction. Microorganisms, 2022, 10(1): 142, pmcid: 8779874 |
11. | Lee OK, et al.. Metabolic engineering of methanotrophs and its application to production of chemicals and biofuels from methane. Biofuels, Bioprod Biorefin, 2016, 10(6): 848-863 |
12. | Yang S, et al.. Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part II. Metabolomics and 13C-labeling study. Front Microbiol, 2013, 4: 70, pmcid: 3615224 |
13. | Stein LY, et al. Proteobacterial methanotrophs, methylotrophs, and nitrogen. In: Kalyuzhnaya MG, Xing X-H, editors. Methane bioctalysis: pavingthe way to sustainability. Springer Cham; 2018. p. 57–66. https://doi.org/10.1007/978-3-319-74866-5 |
14. | Ushasree, M.V., et al., Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnology Advances, 2023: p. 108097. |
15. | Miroshnikov K, Belova S, Dedysh S. Genomic determinants of phototrophy in methanotrophic Alphaproteobacteria. Microbiology, 2019, 88: 548-555 |
16. | Zytnick, A.M., et al., Identification of a biosynthetic gene cluster encoding a novel lanthanide chelator in Methylorubrum extorquens AM1. bioRxiv, 2022: p. 2022.01. 19.476857. |
17. | Nguyen NA, et al.. A silent biosynthetic gene cluster from a methanotrophic bacterium potentiates discovery of a substrate promiscuous proteusin cyclodehydratase. ACS Chem Biol, 2022, 17(6): 1577-1585, pmcid: 9746716 |
18. | Bordel S, Rodríguez E, Mu?oz R. Genome sequence of Methylocystis hirsuta CSC1, a polyhydroxyalkanoate producing methanotroph. MicrobiologyOpen, 2019, 8(6), |
19. | Heil JR, et al.. The completed PacBio single-molecule real-time sequence of Methylosinus trichosporium strain OB3b reveals the presence of a third large plasmid. Genome Announc, 2017, 5(49): e01349-e1417, pmcid: 5721141 |
20. | Tripathi AK, et al.. Transcriptomics and functional analysis of Copper stress response in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. Int J Mol Sci, 2022, 23(3): 1396, pmcid: 8836040 |
21. | Deshpande SV, et al.. Offline next generation metagenomics sequence analysis using MinION Detection Software (MINDS). Genes, 2019, 10(8): 578, pmcid: 6723491 |
22. | Wang J, et al.. Systematic comparison of the performances of de novo genome assemblers for oxford nanopore technology reads from piroplasm. Front Cell Infect Microbiol, 2021, 11, pmcid: 8415751 |
23. | Liu L, et al.. Nanopore long-read-only metagenomics enables complete and high-quality genome reconstruction from mock and complex metagenomes. Microbiome, 2022, 10(1): 209, pmcid: 9716684 |
24. | Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014, 30(14): 2068-2069, |
25. | Hyatt D, et al.. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform, 2010, 11(1): 1-11 |
26. | Guo D-J, et al.. Complete genome analysis of sugarcane root associated endophytic diazotroph Pseudomonas aeruginosa DJ06 revealing versatile molecular mechanism involved in sugarcane development. Front Microbiol., 2023, 14: 1096754, pmcid: 10157262 |
27. | Aziz RK, et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genom, 2008, 9(1): 1-15 |
28. | McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC–rich genome of a bacterial symbiont. PLoS Genet, 2009, 5(7), pmcid: 2704378 |
29. | Blin K, et al.. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res, 2023, 51: gkad344 |
30. | Weber T, et al.. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J Biotechnol, 2009, 140(1–2): 13-17, |
31. | Caboche S, et al.. NORINE: a database of nonribosomal peptides. Nucleic Acids Res, 2007, 36(suppl_1): D326-D331, pmcid: 2238963 |
32. | De Jong A, et al.. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res, 2010, 38(suppl_2): W647-W651, pmcid: 2896169 |
33. | Kamra P, Gokhale RS, Mohanty D. SEARCHGTr: a program for analysis of glycosyltransferases involved in glycosylation of secondary metabolites. Nucleic Acids Res, 2005, 33(suppl_2): W220-W225, pmcid: 1160210 |
34. | Starcevic A, et al.. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res, 2008, 36(21): 6882-6892, pmcid: 2588505 |
35. | Mungan MD, et al.. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res, 2020, 48(W1): W546-W552, pmcid: 7319560 |
36. | Medema MH, et al.. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput Biol, 2014, 10(9), pmcid: 4154637 |
37. | Gomez-Gomez A, et al.. Evaluation of metabolic changes in acute intermittent porphyria patients by targeted metabolomics. Int J Mol Sci, 2022, 23(6): 3219, pmcid: 8950560 |
38. | Caspi R, et al.. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res, 2014, 42(D1): D459-D471, |
39. | Elabed H, et al.. Effect of long-term starvation in salty microcosm on biofilm formation and motility in Pseudomonas aeruginosa. World J Microbiol Biotechnol, 2013, 29: 657-665, |
40. | Czech B. Expression, function and regulation of methylthioadenosine phosphorylase in the pathogenesis of chronic liver disease. 2013. |
41. | Pereira J, Sim?es M, Silva JL. Microalgal assimilation of vitamin B12 toward the production of a superfood. J Food Biochem, 2019, 43(8), |
42. | Warren MJ, Deery E. Vitamin B 12 (cobalamin) biosynthesis in the purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The purple phototrophic bacteria. Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht; 2009. p. 81–95. |
43. | Ouyang Q, et al.. Promoter screening facilitates heterologous production of complex secondary metabolites in Burkholderiales strains. ACS Synth Biol, 2020, 9(2): 457-460, |
44. | Cayetano RDA, et al.. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. Biores Technol, 2022, 344 |
45. | McElroy KE, et al.. Strain-specific parallel evolution drives short-term diversification during Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci, 2014, 111(14): E1419-E1427, pmcid: 3986123 |
46. | Bundalovic-Torma C, et al.. A systematic pipeline for classifying bacterial operons reveals the evolutionary landscape of biofilm machineries. PLoS Comput Biol, 2020, 16(4), pmcid: 7112194 |
47. | Fuqua C, Winans SC, Greenberg EP. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol, 1996, 50(1): 727-751, |
48. | Berne C, et al.. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microb biofilms., 2015, 3(4): 163-199, |
49. | Jolly L, Stingele F. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J, 2001, 11(9): 733-745 |
50. | Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet, 2001, 35(1): 439-468, |
51. | Herwald SE, Kumamoto CA. Candida albicans niche specialization: features that distinguish biofilm cells from commensal cells. Curr Fungal Infect Rep, 2014, 8: 179-184, pmcid: 4019406 |
52. | Pamp SJ, Gjermansen M, Tolker-Nielsen T. The biofilm matrix: a sticky framework. In: Kjelleberg S, Givskov MC, editors. Bacterial biofilm formation and adaptation. Horizon BioScience; 2009. p. 37–69. |
53. | Pattanaik B, Lindberg P. Terpenoids and their biosynthesis in cyanobacteria. Life, 2015, 5(1): 269-293, pmcid: 4390852 |
54. | Rohmer M, et al.. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295(2): 517-524, pmcid: 1134910 |
55. | Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol, 2011, 77(7): 2399-2405, pmcid: 3067423 |
56. | Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Biol, 1999, 50(1): 47-65 |
57. | Jeon YC, Nguyen AD, Lee EY. Bioproduction of isoprenoids and other secondary metabolites using methanotrophic bacteria as an alternative microbial cell factory option: current stage and future aspects. Catalysts, 2019, 9(11): 883 |
58. | Leonard Effendi MJ. Pepe Jeffrey, Compositions and methods for biological production of isoprene, W.I.P. Organization, Editor. 2014. |
59. | Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev, 2010, 34(4): 496-531, |
60. | Chidambarampadmavathy K, Obulisamy KP, Heimann K. Role of copper and iron in methane oxidation and bacterial biopolymer accumulation. Eng Life Sci, 2015, 15(4): 387-399 |
61. | Semrau JD, et al.. Metals and methanotrophy. Appl Environ Microbiol, 2018, 84(6): e02289-e2317, pmcid: 5835748 |
62. | Insights FM. Stearic acid market, in stearic acid market overview (2022–2032), F.M. Insights, Editor. 2022; Webpage. |
63. | MarketWatch, Palmitoleic Acid Market Analysis, 2030. 2023, MarketWatch: Webpage. |
64. | Technavio, Ricinoleic Acid Market by End-user and Geography - Forecast and Analysis 2022–2026. 2023; Technavio: Webpage. |
65. | Research MM. Methyl palmitate market: global industry analysis and forecast (2023–2029), M.M. Research, Editor. 2023; Webpage. |
66. | Research E. Lauryl myristyl alcohol market, by application (Personal Care and Industrial & Domestic Cleaning), E. Research, Editor. 2023; Webpage. p. 250. |
67. | Bourcet E, et al.. Tandem cross-metathesis/hydrogenation: application to an enantioselective synthesis of pentadecyl 6-hydroxydodecanoate. Tetrahedron Lett, 2008, 49(48): 6816-6818 |
68. | Harutyunyan LR. Effect of amino acids on micellization, surface activity and micellar properties of nonionic surfactant hexadecyl alcohol ethoxylate (25EO) in aqueous solutions. J Surfactants Deterg, 2015, 18: 73-81 |
69. | MarketWatch, [2023–2030], Trehalose Market by Driving Factors & CAGR Status. 2023, MarketWatch: Webpage. |
70. | MarketWatch, 2023–2030 Ethanolamine Market Size with industrial chain Analysis, in Latest Survey by Absolute Reports, MarketWatch, Editor. 2023: Webpage. |
71. | Devaraja D, Kiss AA. Novel intensified process for ethanolamines production using reactive distillation and dividing-wall column technologies. Chem Eng Process-Process Intensif, 2022, 179 |
72. | Al-Arfaj M, Luyben WL. Comparison of alternative control structures for an ideal two-product reactive distillation column. Ind Eng Chem Res, 2000, 39(9): 3298-3307 |
73. | He X, Fu C, H?gg M-B. Membrane system design and process feasibility analysis for CO2 capture from flue gas with a fixed-site-carrier membrane. Chem Eng J, 2015, 268: 1-9 |
74. | Chen X, et al.. Expanding the boundary of biorefinery: organonitrogen chemicals from biomass. Acc Chem Res, 2021, 54(7): 1711-1722, |
75. | Kwon Y, et al.. Arabidopsis serine decarboxylase mutants implicate the roles of ethanolamine in plant growth and development. Int J Mol Sci, 2012, 13(3): 3176-3188, pmcid: 3317708 |
76. | Bernfeld P. The biogenesis of carbohydrates. In: Biogenesis of natural compounds. 1963; p. 278–299. |
77. | Wang, Q, et al. A novel bifunctional aldehyde/alcohol dehydrogenase mediating ethanol formation from acetyl-CoA in hyperthermophiles. 2020. |
78. | Moreno-Olivares JD, et al.. Aromatic characterization of new white wine varieties made from Monastrell grapes grown in south-eastern Spain. Molecules, 2020, 25(17): 3917, pmcid: 7503703 |
79. | Thormar H, Hilmarsson H, Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp. and Escherichia coli. Appl Environ Microbiol, 2006, 72(1): 522-526, pmcid: 1352223 |
80. | Broadwater JA. . Biochemical and biophysical studies of the catalytic mechanism of Ricinus communis stearoyl-acyl carrier protein Delta (9)-desaturase, 1999 The University of Wisconsin-Madison |
81. | Cola?o C, Roser B. Trehalose-a multifunctional additive for food preservation. In: Mathlouthi M, editor. Food packaging and preservation. NY: Springer New York; 1994. p. 123–140. |
82. | Taguchi Y, et al.. Efficient one-pot enzymatic synthesis of trehalose 6-phosphate using GH65 α-glucoside phosphorylases. Carbohyd Res, 2020, 488 |
83. | Elbein AD, et al.. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13(4): 17R-27R, |