Exploring the potential of Thraustochytrids and other microorganisms for sustainable omega-3 production: a comprehensive review of patents, perspectives, and scale-up strategies

Guilherme Anacleto dos Reis1, Cristine Rodrigues1, Agatha Maria Wiatek1, Gilberto Vinícius de Melo Pereira1, Júlio Cesar de Carvalho1, Walter José Martinez-Burgos1, Susan Grace Karp1, Vanete Tomaz Soccol1, Luiz Alberto Junior Letti1, Carlos Ricardo Soccol1,k()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 448-462. DOI: 10.1007/s43393-023-00213-z
Review

Exploring the potential of Thraustochytrids and other microorganisms for sustainable omega-3 production: a comprehensive review of patents, perspectives, and scale-up strategies

  • Guilherme Anacleto dos Reis1, Cristine Rodrigues1, Agatha Maria Wiatek1, Gilberto Vinícius de Melo Pereira1, Júlio Cesar de Carvalho1, Walter José Martinez-Burgos1, Susan Grace Karp1, Vanete Tomaz Soccol1, Luiz Alberto Junior Letti1, Carlos Ricardo Soccol1,k()
Author information +
History +

Abstract

Docosahexaenoic acid (DHA, C22H32O2, C22:6 ω-3) and Eicosapentaenoic acid (EPA, C20H30O2 C20:5 ω-3), are biomolecules from the group of omega 3 polyunsaturated fatty acids (PUFA). In recent decades, a large number of clinical and epidemiological studies have demonstrated the benefits of this molecule for improving human health and preventing various diseases. Based on this, the demand for this bioproduct has grown year after year, to the point where traditional long-term production cannot keep up with the consumer market itself. With this problem in mind, this review article aims to provide an overview of the current state of sustainable production of omega-3 PUFAs. A comparative survey of microorganisms from the thraustochytrid family with other species of microorganisms from other kingdoms and families was carried out to show the best potential for microbial oil production. The comparison involved an in-depth analysis of the scientific literature and patents currently registered on the subject. The results showed that thraustochytrids have more advantages and practicality in a wider variety of substrates and culture media than their other competitors. Therefore, with the ever-increasing demand for human and animal needs, the study and application of species that produce and accumulate fatty acids is becoming increasingly urgent. Thus, obtaining omega-3 through microbial oil represents a sustainable and economically viable alternative for the future.

Keywords

Omega-3 / Docosahexaenoic acid / Eicosapentaenoic acid / Alternative sources / Thraustochytrids / Schizochytrium / Biotechnological advances

Cite this article

Download citation ▾
Guilherme Anacleto dos Reis, Cristine Rodrigues, Agatha Maria Wiatek, Gilberto Vinícius de Melo Pereira, Júlio Cesar de Carvalho, Walter José Martinez-Burgos, Susan Grace Karp, Vanete Tomaz Soccol, Luiz Alberto Junior Letti, Carlos Ricardo Soccol. Exploring the potential of Thraustochytrids and other microorganisms for sustainable omega-3 production: a comprehensive review of patents, perspectives, and scale-up strategies. Systems Microbiology and Biomanufacturing, 2023, 4(2): 448‒462 https://doi.org/10.1007/s43393-023-00213-z

References

1.
Ding J, Fu Z, Zhu Y, He J, Ma L, Bu D. Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design. BMC Biotechnol, 2022, 22: 1-12,
2.
Abbas N, Riaz S, Mazhar S, Essa R, Maryam M, Saleem Y, Syed Q, Perveen I, Bukhari B, Ashfaq S, et al.. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits. Arch Microbiol, 2023, 205: 1-11,
3.
Chen ZL, Yang LH, He SJ, Du YH, Guo DS. Development of a green fermentation strategy with resource cycle for the docosahexaenoic acid production by Schizochytrium sp. Bioresour Technol, 2023, 385,
4.
Karageorgou D, Rova U, Christakopoulos P, Katapodis P, Matsakas L, Patel A. Benefits of supplementation with microbial omega-3 fatty acids on human health and the current market scenario for fish-free omega-3 fatty acid. Trends Food Sci Technol, 2023, 136: 169-180,
5.
Pó?brat T, Konkol D, Korczyński M. Optimization of docosahexaenoic acid production by Schizochytrium sp.—a review. Biocatal Agric Biotechnol, 2021, 35,
6.
Morabito C, Bournaud C, Ma?s C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The Lipid Metabolism in thraustochytrids. Prog Lipid Res, 2019, 76,
7.
Chang M, Zhang T, Guo X, Liu Y, Liu R, Jin Q, Wang X. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochem, 2020, 94: 190-197,
8.
Zeb L, Wang XD, Zheng WL, Teng XN, Shafiq M, Mu Y, Chi ZY, Xiu ZL. Microwave-assisted three-liquid-phase salting-out extraction of docosahexaenoic acid (DHA)-rich oil from cultivation broths of Schizochytrium limacinum SR21. Food Bioprod Process, 2019, 118: 237-247,
9.
Ma W, Liu M, Zhang Z, Xu Y, Huang P, Guo D, Sun X, Huang H. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol, 2022, 5: 1-11,
10.
Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem, 1929, 82: 345-367,
11.
Burr GO, Burr MM. On the nature and role of the fatty acids essential in nutrition. J Biol Chem, 1930, 86: 587-621,
12.
Ji X-J, Ren L-J, Huang H. Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Front Bioeng Biotechnol, 2015, pmcid: 4600955
13.
Steinrücken P, Erga SR, Mj?s SA, Kleivdal H, Prestegard SK. Bioprospecting North Atlantic microalgae with fast growth and high polyunsaturated fatty acid (PUFA) content for microalgae-based technologies. Algal Res, 2017, 26: 392-401, pmcid: 5614095
14.
Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet, 2007, 369: 578-585,
15.
Turchini GM, Torstensen BE, Ng W-K. Fish oil replacement in finfish nutrition. Rev Aquac, 2009, 1: 10-57,
16.
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, et al.. Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci, 2009, 106: 15103-15110, pmcid: 2741212
17.
Nichols PD, Petrie J, Singh S. Long-chain omega-3 oils—an update on sustainable sources. Nutrients, 2010, 2: 572-585, pmcid: 3257669
18.
Miller MR, Nichols PD, Carter CG. N-3 Oil Sources for use in aquaculture alternatives to the unsustainable harvest of wild fish. Nutr Res Rev, 2008, 21: 85-96,
19.
Kannan N, Rao AS, Nair A. Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol, 2021, 131: 2114-2130,
20.
Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee DJ, Chang JS. Microalgae biorefinery: high value products perspectives. Bioresour Technol, 2017, 229: 53-62,
21.
Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM. Biorefinery of microalgae for food and fuel. Bioresour Technol, 2013, 135: 142-149,
22.
Baicha Z, Salar-García MJ, Ortiz-Martínez VM, Hernández-Fernández FJ, de los Ríos AP, Labjar N, Lotfi E, Elmahi M. A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol, 2016, 154: 104-116,
23.
Khoo HH, Koh CY, Shaik MS, Sharratt PN. Bioenergy co-products derived from microalgae biomass via thermochemical conversion—life cycle energy balances and CO2 emissions. Bioresour Technol, 2013, 143: 298-307,
24.
Cheah WY, Show PL, Chang JS, Ling TC, Juan JC. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol, 2015, 184: 190-201,
25.
Dewapriya P, Kim S. Kwon marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int, 2014, 56: 115-125,
26.
Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC, Fernández-Sevilla JM, Acién-Fernández FG, Molina-Grima E. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol, 2014, 98: 2429-2440,
27.
Chen CY, Chen YC, Huang HC, Ho SH, Chang JS. Enhancing the production of eicosapentaenoic acid (EPA) from Nannochloropsis oceanica CY2 using innovative photobioreactors with optimal light source arrangements. Bioresour Technol, 2015, 191: 407-413,
28.
Long J, Jia J, Gong Y, Han D, Hu Q. Assessment of eicosapentaenoic acid (EPA) production from filamentous microalga Tribonema aequale: from laboratory to pilot-scale study. Mar Drugs, 2022, pmcid: 9502265
29.
Gu W, Kavanagh JM, McClure DD. A scalable model for EPA and fatty acid production by Phaeodactylum tricornutum. Front Bioeng Biotechnol, 2022, 10: 1-19,
30.
Thurn AL, Stock A, Gerwald S, Weuster-Botz D. Simultaneous photoautotrophic production of DHA and EPA by Tisochrysis lutea and Microchloropsis salina in co-culture. Bioresour Bioprocess, 2022,
31.
Leyland B, Leu S, Boussiba S. Are thraustochytrids algae?. Fungal Biol, 2017, 121: 835-840,
32.
Burja AM, Radianingtyas H, Windust A, Barrow CJ. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol, 2006, 72: 1161-1169,
33.
Raghukumar S. Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol, 2008, 10: 631-640,
34.
Singh A, Wilson S, Ward OP. Docosahexaenoic acid (DHA) production by Thraustochytrium sp. ATCC 20892. World J Microbiol Biotechnol, 1996, 12: 76-81,
35.
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms, 2020, 8: 434, pmcid: 7143722
36.
Patel A, Matsakas L, Hr?zová K, Rova U, Christakopoulos P. Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass. Mar Drugs, 2019, pmcid: 6410020
37.
Kim K, Jung Kim E, Ryu BG, Park S, Choi YE, Yang JWA. Novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour Technol, 2013, 135: 269-274,
38.
Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol, 2013, 142: 400-406,
39.
Yu XJ, Yu ZQ, Liu YL, Sun J, Zheng JY, Wang Z. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Appl Biochem Biotechnol, 2015, 177: 1229-1240,
40.
Patil KP, Gogate PR. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chem Eng J, 2015, 268: 187-196,
41.
Furlan VJM, Maus V, Batista I, Bandarra NM. Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Braz J Microbiol, 2017, 48: 359-365, pmcid: 5470432
42.
Nazir Y, Shuib S, Kalil MS, Song Y, Hamid AA. Optimization of culture conditions for enhanced growth, lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium SW1 by response surface methodology. Sci Rep, 2018, pmcid: 5995909
43.
Patel A, Liefeldt S, Rova U, Christakopoulos P, Matsakas L. Co-Production of DHA and squalene by thraustochytrid from forest biomass. Sci Rep, 2020, pmcid: 7773739
44.
Thevenieau F, Nicaud J-M. Microorganisms as sources of oils. OCL, 2013, 20: D603,
45.
Naveena KC, Lingappa R. Production of polyunsaturated fatty acids (PUFAs) from microbes and their secondary metabolites. Int J Curr Microbiol Appl Sci, 2018, 7: 2680-2689,
46.
Kumar S, Gupta N, Pakshirajan K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng, 2015, 3: 1630-1636,
47.
Peng YF, Chen WC, Xiao K, Xu L, Wang L, Wan X. DHa Production in Escherichia coli by expressing reconstituted key genes of polyketide synthase pathway from marine bacteria. PLoS?One, 2016, pmcid: 5199049
48.
Gemperlein K, Zipf G, Bernauer HS, Müller R, Wenzel SC. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab Eng, 2016, 33: 98-108,
49.
Goswami L, Tejas Namboodiri MM, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energy, 2017, 105: 400-406,
50.
Zhang J, Burgess JG. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T. PLoS?One, 2017, pmcid: 5747429
51.
Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL, 2013, 20: D602,
52.
Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. Production strategies and applications of microbial single cell oils. Front Microbiol, 2016, 7: 1-26,
53.
Okuda T, Ando A, Negoro H, Muratsubaki T, Kikukawa H, Sakamoto T, Sakuradani E, Shimizu S, Ogawa J. Eicosapentaenoic acid (EPA) production by an oleaginous fungus Mortierella alpina expressing heterologous the Δ17-desaturase gene under ordinary temperature. Eur J Lipid Sci Technol, 2015, 117: 1919-1927,
54.
Xie D, Miller E, Sharpe P, Jackson E, Zhu Q. Omega-3 production by fermentation of Yarrowia lipolytica: from fed-batch to continuous. Biotechnol Bioeng, 2017, 114: 798-812,
55.
Guo M, Chen G, Chen J, Zheng M. Identification of a long-chain fatty acid elongase from Nannochloropsis sp. involved in the biosynthesis of fatty acids by heterologous expression in Saccharomyces cerevisiae. J Ocean Univ China, 2019, 18: 1199-1206,
56.
Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol, 2014, 26: 14-18,
57.
Ruiz-López N, Sayanova O, Napier JA, Haslam RP. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J Exp Bot, 2012, 63: 2397-2410,
58.
Valentine RC, Valentine DL. Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res, 2004, 43: 383-402,
59.
Venegas-Calerón M, Sayanova O, Napier JA. An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res, 2010, 49: 108-119,
60.
Huang C, Chen X, Xiong L, de Chen X, Ma L, Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv, 2013, 31: 129-139,
61.
Yokoyama R, Honda D. Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S RRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 2007, 48: 199-211,
62.
Chi Z, Pyle D, Wen Z, Frear C, Chen S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem, 2007, 42: 1537-1545,
63.
Chi Z, Liu Y, Frear C, Chen S. Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol, 2009, 81: 1141-1148,
64.
Ethier S, Woisard K, Vaughan D, Wen Z. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol, 2011, 102: 88-93,
65.
Rosa SM, Soria MA, Vélez CG, Galvagno MA. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour Technol, 2010, 101: 2367-2374,
66.
Ma W, Zhang Z, Yang W, Huang P, Gu Y, Sun X, Huang H. Enhanced docosahexaenoic acid production from cane molasses by engineered and adaptively evolved Schizochytrium sp. Bioresour Technol, 2023, 376,
67.
Song X, Zang X, Zhang X. Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci, 2015, 64: 197-204,
68.
Yin FW, Zhu SY, Guo DS, Ren LJ, Ji XJ, Huang H, Gao Z. Development of a strategy for the production of docosahexaenoic acid by Schizochytrium sp. from cane molasses and algae-residue. Bioresour Technol, 2019, 271: 118-124,
69.
Lee SY, Kim HU. Systems strategies for developing industrial microbial strains. Nat Biotechnol, 2015, 33: 1061-1072,
70.
Croughan MS, Konstantinov KB, Cooney C. The future of industrial bioprocessing: batch or continuous? Continuous bioprocessing for certain scenarios. Biotechnol Bioeng, 2015, 112: 648-651,
71.
Liu Y, Singh P, Liang Y, Li J, Xie N, Song Z, Daroch M, Leng K, Johnson ZI, Wang G. Abundance and molecular diversity of thraustochytrids in coastal waters of Southern China. FEMS Microbiol Ecol, 2017, 93: 1-30,
72.
Wang Q, Ye H, Xie Y, He Y, Sen B, Wang G. Culturable diversity and lipid production profile of Labyrinthulomycete protists isolated from coastal mangrove habitats of China. Mar Drugs, 2019, pmcid: 7024145
73.
Yang X, Li S, Li S, Liu L, Hu Z. De novo transcriptome analysis of polyunsaturated fatty acid metabolism in marine protist Thraustochytriidae sp. PKU#Mn16. JAOCS J Am Oil Chem Soc, 2020, 97: 35-48,
74.
Schilling C, Weiss S. A roadmap for industry to harness biotechnology for a more circular economy. N Biotechnol, 2021, 60: 9-11,
75.
Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. Plants developed by new genetic modification techniques-comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol, 2019, pmcid: 6504764
76.
Magee L, Scerri A, James P. Measuring social sustainability: a community-centred approach. Appl Res Qual Life, 2012, 7: 239-261,
77.
Ventura SPM, Nobre BP, Ertekin F, Hayes M, Garciá-Vaquero M, Vieira F, Koc M, Gouveia L, Aires-Barros MR, Palavra AMF. Extraction of value-added compounds from microalgae. In: Microalgae-based biofuels bioprod. from feed. cultiv. to end-products, pp. 461–483. https://doi.org/10.1016/B978-0-08-101023-5.00019-4 (2017).
78.
Udayan A, Arumugam M, Pandey A. Nutraceuticals from algae and cyanobacteria. In: Algal Green Chem. Recent Prog. Biotechnol., pp. 65–89. https://doi.org/10.1016/B978-0-444-63784-0.00004-7 (2017).
79.
Chen CY, Yang YT. Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain. Biochem Eng J, 2018, 133: 179-185,
80.
de Finco AMO, Mamani LDG, de Carvalho JC, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol, 2017, 37: 656-671,
81.
Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M. Enhancing and improving the extraction of omega-3 from fish oil. Sustain Chem Pharm, 2017, 5: 54-59,
82.
Qu L, Ren LJ, Huang H. Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochem Eng J, 2013, 77: 82-87,
83.
Guo DS, Ji XJ, Ren LJ, Li GL, Sun XM, Chen KQ, Gao S, Huang H. Development of a scale-up strategy for fermentative production of docosahexaenoic acid by Schizochytrium sp. Chem Eng Sci, 2018, 176: 600-608,
84.
Ernst H. Patent information for strategic technology management. World Pat Inf, 2003, 25: 233-242,
85.
Stoneham TR, Kuhn DD, Taylor DP, Neilson AP, Smith SA, Gatlin DM, Chu HSS, O’Keefe SF. Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil: Improved nutrient value of fillet and offal. PLoS?One, 2018, 13: 1-14,
86.
Sprague M, Dick JR, Tocher DR. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci Rep, 2016, 6: 1-9,
87.
Tanaka S, Yaguchi T, Shimizui S, Sogo T, Fujikawa S. Process for preparation of docosahexaenoic acid and docosapentaenoic acid; preparation process from lipid; lipid-producing microorganism; food and congeners obtained through the process. BR Patent 9710394A, 9710394 (2000).
Funding
Coordination for the Improvement of Higher Education Personnel(404753/2021-3)

Accesses

Citations

Detail

Sections
Recommended

/