Blue light-emitting diode as the promising photodynamic method for the inactivation of Staphylococcus aureus

Hien Minh Nguyen1,3(), Thi Yen Nhi Nguyen1,2,3(), Nguyen Kieu My Vo1,3(), Cong Toan Le2,3(), Xuan Thanh Bui2,3, Thi Tan Pham2,3,f()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 223-229. DOI: 10.1007/s43393-023-00201-3
Original Article

Blue light-emitting diode as the promising photodynamic method for the inactivation of Staphylococcus aureus

  • Hien Minh Nguyen1,3(), Thi Yen Nhi Nguyen1,2,3(), Nguyen Kieu My Vo1,3(), Cong Toan Le2,3(), Xuan Thanh Bui2,3, Thi Tan Pham2,3,f()
Author information +
History +

Abstract

Staphylococcus aureus is one of the most common bacteria in the human skin and causes various severe infections. Methicillin-resistant Staphylococcus aureus (MRSA) has raised significant concerns and challenges because they are difficult to kill due to their ability to resist many antibiotics. In the present study, a blue light-emitting diode with a wavelength of 405 nm was designed and applied for inactivating S. aureus. We investigated the dependence of the S. aureus inactivation rate on the irradiation factors, including time, distance, and energy dose. The results indicated that irradiation time and distance were observed to significantly affect the growth of S. aureus. In particular, the energy dose of 322.2 J/cm2 at a distance of 5 cm for 35 min was recommended to inactivate S. aureus growth completely. The study also proposes the DNA self-repair mechanism causing the delaying time during inactivating S. aureus. Therefore, energy dose is a reliable parameter for designing a single-factor experiment to optimize the irradiation time and distance to obtain a suitable range of values. The comparison between red and blue LED also confirmed the ability of the blue LED to inhibit bacterial growth, while red LED enhances the growth of bacteria. Briefly, our research suggested that blue LED at the wavelength of 405 nm has the potential to be applied in clinical hygiene and food processing as an antimicrobial technique to prevent the development of antibiotic resistance.

Keywords

Blue LED / Staphylococcus aureus / Bacterial inactivation / Photodynamic / DNA self-repair

Cite this article

Download citation ▾
Hien Minh Nguyen, Thi Yen Nhi Nguyen, Nguyen Kieu My Vo, Cong Toan Le, Xuan Thanh Bui, Thi Tan Pham. Blue light-emitting diode as the promising photodynamic method for the inactivation of Staphylococcus aureus. Systems Microbiology and Biomanufacturing, 2023, 4(1): 223‒229 https://doi.org/10.1007/s43393-023-00201-3

References

1.
Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev, 2015, 28(3): 603-661, pmcid: 4451395
2.
Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. Proc Soc Exp Biol Med, 1942, 51(3): 386-389,
3.
Chambers HF, DeLeo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol, 2009, 7(9): 629-641, pmcid: 2871281
4.
Jokinen E, Laine J, Huttunen R, Rahikka P, Huhtala H, Vuento R, Vuopio J, Syrj?nen J. Comparison of outcome and clinical characteristics of bacteremia caused by methicillin-resistant, penicillin-resistant and penicillin-susceptible Staphylococcus aureus strains. Infect Dis, 2017, 49(7): 493-500,
5.
Mediavilla JR, Chen L, Mathema B, Kreiswirth BN. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr Opin Microbiol, 2012, 15(5): 588-595,
6.
Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev, 2018, 31(4): e00020-e118, pmcid: 6148192
7.
Shang W, Hu Q, Yuan W, Cheng H, Yang J, Hu Z, Yuan J, Zhang X, Peng H, Yang Y. Comparative fitness and determinants for the characteristic drug resistance of ST239-MRSA-III-t030 and ST239-MRSA-III-t037 strains isolated in China. Microb Drug Resist, 2016, 22(3): 185-192,
8.
Diekema D. Surver of infections due to Staphylococcus specise: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial surveillance program, 1997–1999. Clin Infect Dis, 2001, 32(2): 114-132,
9.
Solomon SL, Oliver KB. Antibiotic resistance threats in the United States: stepping back from the brink. Am Fam Physician, 2014, 89(12): 938-941,
10.
Abril GA, Villa GT, Barros-Velázquez J, Ca?as B, Sánchez-Pérez A, Calo-Mata P, Carrera M. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins, 2020, 12(9): 537,
11.
Aires-de-Sousa M. Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect, 2017, 23(6): 373-380,
12.
Di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Ianieri A. Biofilm formation by Staphylococcus aureus on food contact surfaces: relationship with temperature and cell surface hydrophobicity. Food Control, 2015, 50: 930-936,
13.
Wu S, Huang J, Wu Q, Zhang F, Zhang J, Lei T, Chen M, Ding Y, Xue L. Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Front Microbiol, 2018, 9: 1263, pmcid: 6011812
14.
Wang X, Li G, Xia X, Yang B, Xi M, Meng J. Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi. China Foodborne Pathog Dis, 2014, 11(4): 281-286,
15.
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis, 2011, 17(1): 7, pmcid: 3375761
16.
Sun Y, Ogawa R, Xiao BH, Feng YX, Wu Y, Chen LH, Gao XH, Chen HD. Antimicrobial photodynamic therapy in skin wound healing: a systematic review of animal studies. Int Wound J, 2020, 17(2): 285-299,
17.
Leanse LG, Harrington OD, Fang Y, Ahmed I, Goh XS, Dai T. Evaluating the potential for resistance development to antimicrobial blue light (at 405 nm) in Gram-negative bacteria: in vitro and in vivo studies. Front Microbiol, 2018, 9: 2403, pmcid: 6232756
18.
Srimagal A, Ramesh T, Sahu JK. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk. LWT-Food Sci Technol, 2016, 71: 378-385,
19.
Bhavya ML, Hebbar HU. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason Sonochem, 2019, 57: 108-115,
20.
Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem, 2009, 9(8): 974-983,
21.
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel ID, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev, 2023, 52: 1697-1722,
22.
Kleinpenning MM, Smits T, Frunt MH, Van Erp PE, Van De Kerkhof PC, Gerritsen RM. Clinical and histological effects of blue light on normal skin. Photodermatol Photoimmunol Photomed, 2010, 26(1): 16-21,
23.
Klak M, Gomó?ka M, Dobrzański T, Tymicki G, Cywoniuk P, Kowalska P, Kosowska K, Bryniarski T, Berman A, Dobrzyń A. Irradiation with 365 nm and 405 nm wavelength shows differences in DNA damage of swine pancreatic islets. PLoS ONE, 2020, 15(6): e0235052, pmcid: 7316267
24.
Koutchma T, Popovi? V. UV light-emitting diodes (LEDs) and food safety. Ultraviolet LED Technol Food Applicat, 2019,
25.
Wang Y, Wu X, Chen J, Amin R, Lu M, Bhayana B, Zhao J, Murray CK, Hamblin MR, Hooper DC. Antimicrobial blue light inactivation of gram-negative pathogens in biofilms: in vitro and in vivo studies. J Infect Dis, 2016, 213(9): 1380-1387, pmcid: 4813746
26.
Pham TT, Le TC, Nguyen MH, Le TNT, Tra V-T, Bui X-T. Inactivating Escherichia coli using hexagonal array of narrow bandwidth of violet-blue light emitting diode. Case Stud Chem Environ Eng, 2023, 8: 100389,
27.
Cong Toan L, Xuan Nghiem L, Quoc Toan T, Thi Tan P. Design panel of hexafonal nanowire-based blue LEDs for inactivation bacteria in food safety. J Aust Soc Agricult Econ, 2022, 18(7): 1259-1267
28.
Maclean M, MacGregor S, Anderson J, Woolsey G, Coia J, Hamilton K, Taggart I, Watson S, Thakker B, Gettinby G. Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect, 2010, 76(3): 247-251,
29.
Makdoumi K, Hedin M, B?ckman A. Different photodynamic effects of blue light with and without riboflavin on methicillin-resistant Staphylococcus aureus (MRSA) and human keratinocytes in vitro. Lasers Med Sci, 2019, 34: 1799-1805,
30.
Wu S, Ross C, Hadi J, Brightwell G. In vitro inactivation effect of blue light emitting diode (LED) on Shiga-toxin-producing Escherichia coli (STEC). Food Control, 2021, 125: 107990,
31.
Goosen N, Moolenaar GF. Repair of UV damage in bacteria. DNA Repair, 2008, 7(3): 353-379,
32.
Yi C, He C. DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol, 2013, 5(1): a012575, pmcid: 3579392
33.
Essen L, Klar T. Light-driven DNA repair by photolyases. Cell Mol Life Sci, 2006, 63: 1266-1277,
34.
Kurthkoti K, Kumar P, Sang PB, Varshney U. Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem, 2020, 12(04): 339-355,
35.
Kraithong T, Hartley S, Jeruzalmi D, Pakotiprapha D. A peek inside the machines of bacterial nucleotide excision repair. Int J Mol Sci, 2021, 22(2): 952-971, pmcid: 7835731
36.
Grinholc M, Rodziewicz A, Forys K, Rapacka-Zdonczyk A, Anna Kawiak AD, Golunski G, Wolz C, Mesak L, Becker K, Bielawski KP. Fine-tuning recA expression in Staphylococcus aureus for antimicrobial photoinactivation: importance of photo-induced DNA damage in the photoinactivation mechanism. Appl Microbiol Biotechnol, 2015, 99: 9161-9176, pmcid: 4619464
37.
Galo I, Prado R, Dos Santos W. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth. Braz J Biol, 2021,

Accesses

Citations

Detail

Sections
Recommended

/