Selection of a biocontrol agent based on a comparative spore production evaluation

Nathiely Ramírez-Guzmán1, Sevastianos Roussos2, Gloria A. Martinez-Medina1, Raúl Rodríguez1, Cristóbal N. Aguilar1,e()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 794-800. DOI: 10.1007/s43393-023-00198-9
Original Article

Selection of a biocontrol agent based on a comparative spore production evaluation

  • Nathiely Ramírez-Guzmán1, Sevastianos Roussos2, Gloria A. Martinez-Medina1, Raúl Rodríguez1, Cristóbal N. Aguilar1,e()
Author information +
History +

Abstract

In recent years, the control of plant pests and diseases has faced new eco-friendly protocols and the use of biocontrol is an attractive alternative as a green and safer management strategy. The use of biological control agents (BCAs) is a major emerging tool in the field of crop disease or pest management that provides an opportunity to replace chemical pesticides that promote sustainable agriculture. Trichoderma species are one of the most efficient BCAs, and the search for new, more bioactive, virulent, and efficient species is a permanent task. In the present study, the potential for biocontrol of four strains of the Trichoderma genus isolated from Coahuila semi-desert was evaluated. The evaluated criteria were: radial growth, growth velocity, and growth rate, as well as the PDA sporulation level. The T1DIA-RRG strain achieves maximum growth at 60 h in radial growth, and a growth rate of 0.60 mm/h in antagonist assays, while T4DIA-ARG strain generates the major spore production (1 × 108 spores/g). In addition, a solid-state fermentation process with sugar cane bagasse is proposed to develop biotechnological strategies for biological control agents, which show satisfactory results for fungal strain Trichoderma asperellum T4DIA-ARD with the required spore production level to be considered and used as a greenhouse biocontrol agent.

Keywords

Biological control / Sporulation / Apical growth

Cite this article

Download citation ▾
Nathiely Ramírez-Guzmán, Sevastianos Roussos, Gloria A. Martinez-Medina, Raúl Rodríguez, Cristóbal N. Aguilar. Selection of a biocontrol agent based on a comparative spore production evaluation. Systems Microbiology and Biomanufacturing, 2023, 4(2): 794‒800 https://doi.org/10.1007/s43393-023-00198-9

References

1.
Ayoub F, Oujji NB, Ayoub M, Hafidi A, Salghi R, Jodeh S. In field control of botrytis cinerea by synergistic action of a fungicide and organic sanitizer. J Integrative Agricul, 2018, 17(6): 1401-1408,
2.
Bell DK, Wells HD, Markham CR. In vitro antagonism of Trichoderma species six fungal plant pathogens. Ecol Epidemiol, 1982, 72: 379-382
3.
Blaser WJ, Oppong J, Yeboah E, Six J. Shade trees have limited benefits for soil fertility in cocoa agroforests. Agr Ecosyst Environ, 2017, 243: 83-91,
4.
Brimner TA, Boland GJ. A review of the non-target effects of fungi used to biologically control plant diseases. Agricult Ecosyst Environ, 2003, 100(1–3): 3-16,
5.
Droby S, Wisniewski M, Macarisin D, Wilson C. Twenty years of postharvest biocontrol research: is it time for a new paradigm?. Postharvest Biol Technol, 2009, 52(2): 137-145,
6.
Trichoderma GM 2009. Disponible en: http://miguelgarridorondoy.blogspot.com/2009/07/trichoderma.html. [Consultado: 07 de diciembre de 2022].
7.
Hu M, Yang D, Huber DJ, Jiang Y, Li M, Gao Z, Zhang Z. Reduction of postharvest anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide treatment. Postharvest Biol Technol, 2014, 97: 115-122,
8.
Kuzmanovska B, Rusevski R, Jankulovska M, Oreshkovikj KB. Antagonistic activity of Trichoderma Asperellum and Trichoderma Harzianum against genetically diverse botrytis Cinerea Isolates. Chilean J Agric Res, 2018, 78(3): 391-399,
9.
De la Cruz-Quiroz R, Roussos S, Tranier MT, Rodríguez-Herrera R, Ramírez-Guzmán N, Aguilar CN. Fungal spores production by solid-state fermentation under hydric stress condition. J BioProcess Chem Technol, 2019, 11(21): 7-12
10.
la Cruz-Quiroz De, Reynaldo SR, Rodríguez-Herrera R, Hernandez-Castillo D, Aguilar CN. Growth Inhibition of Colletotrichum Gloeosporioides and Phytophthora Capsici by Native Mexican Trichoderma Strains. Karbala Int J Modern Sci, 2018, 4(2): 237-243,
11.
Mathivanan N, Prabavathy VR, Vijayanandraj VR. Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex S.F. gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J Phytopathol, 2005, 701: 697-701,
12.
Martínez B, Infante D, Reyes Y. Trichoderma spp. y su función en el control de plagas en los cultivos. Revista de Protección Vegetal, 2013, 28(1): 1-11
13.
Michel-Aceves AC, Hernández-Morales J, Toledo-Aguilar R, Sabino López JE, Romero-Rosales T. CAPACIDAD ANTAGóNICA DE Trichoderma spp NATIVA CONTRA Phytophthora parasitica Y Fusarium oxysporum AISLADOS DE CULTIVOS DE JAMAICA. Revista Fitotecnia Mexicana 2019;42(3):235–241. https://doi.org/10.3519/rfm.2019.3.235-24
14.
Patel S, Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public. Environ Sci Pollut Res, 2019, 26(1): 91-100,
15.
Ramírez-Guzmán N, Torres-León C, Martínez-Terrazas E, De la Cruz-Quiroz R, Flores-Gallegos AC, Rodríguez-Herrera R, Aguilar CN. Biocontrol as an efficient tool for food control and biosecurity. 2018;167–93 in Food Safety and Preservation
16.
Ramírez-Guzmán N, Chávez-González M, Sepúlveda-Torre L, Torres-León C, Cintra A, Angulo-López J, Martínez-Hernández JL, Aguilar CN (2020) Chapter 1—significant advances in biopesticide production: strategies for high-density bio-inoculant cultivation. In: Singh JS, S. R. B. T.-M. S. in R. E. Vimal (eds) pp. 1–11. Elsevier. https://doi.org/10.1016/B978-0-12-819978-7.00001-4
17.
Rodríguez-González LV, Ramírez-Guzmán KN, Torres-León C, Chávez-González ML, Rodríguez-González JG, Aguilar-González CN. Advances and perspectives on the use of co-cultures in biological control. Revista Internacional de Investigación e Innovación Tecnológica, 2023, 63: 48-63
18.
Sada?oski M, Gutierrez-Brower J, Castrillo M, López A, Ojeda P, Zapata P, Villalba L, Otegui M. Capacidades Antagónicas de Cepas Tríchoderma y Su Multiplicación En Masa Usando Desechos Agrícolas. Revista de Ciencia y Tecnología, 2018, 30: 1-10
19.
Torres-León C, Ramirez-Guzman N, Ascacio-Valdes J, Serna-Cock L, dos Santos Correia MT, Contreras-Esquivel JC, Aguilar CN. Solid-state fermentation with aspergillus niger to enhance the phenolic contents and antioxidative activity of mexican mango seed: a promising source of natural antioxidants. Lwt, 2019, 112: 108236,
20.
Torres-León C, Ramírez-Guzman N, Londo?o-Hernandez L, Martinez-Medina GA, Díaz-Herrera R, Navarro-Macias V, Alvarez-Pérez OB, Picazo B, Villarreal-Vázquez M, Ascacio-Valdes J, Aguilar CN. Food waste and byproducts: an opportunity to minimize malnutrition and hunger in developing countries. Front Sustain Food Syst, 2018, 2: 1-17,
21.
Xiang L, Gong S, Yang L, Hao J, Xue MF, Zeng FS, Zhang XJ, Shi WQ, Wang H, Dazhao Y. Biocontrol potential of endophytic fungi in medicinal plants from Wuhan botanical garden in China. Biol Control, 2016, 94: 47-55,
22.
Zhang F, Zhang F, Guo N, Wang Y, Chen L, et al.. Biocontrol Potential of Trichoderma Harzianum Isolate T-Aloe against Sclerotinia Sclerotiorum in Soybean. Plant Physiol Biochem, 2015, 100: 64-74,

Accesses

Citations

Detail

Sections
Recommended

/