State-of-art engineering approaches for ameliorated production of microbial lipid

Subhadeep Mondal, Suman Kumar Halder, Keshab Chandra Mondal

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 20-38. DOI: 10.1007/s43393-023-00195-y
Review

State-of-art engineering approaches for ameliorated production of microbial lipid

Author information +
History +

Abstract

In modern human civilization, the demand for lipids has become upswing for several purposes: nutritional supplements, the production of foods, surfactants, lubricants, and biofuels. With the gradual rise in population, shortage, and deterioration of arable land due to anthropogenic activities, traditional lipids production methods alone cannot conciliate future demand. Various microbial genera related to algae, bacteria, fungi, and yeast can synthesize and accumulate lipids in their bodies. Currently, microbial lipids have emerged as a sustainable successor of plant-derived lipids. However, the commercial scale production of microbial lipids faces some problems such as inadequate level of lipid accumulation in the microbial cells, lipid extraction, and operational cost associated with microbial cultivation. Thus, there is an urgent need to construct oleaginous microbes with modified, preferable features. With the modern biotechnological tools, the insights of the complex microbial genetic makeup and metabolic pathways become explored, allowing various genetic engineering (GE) and metabolic engineering (ME) approaches to develop microbes of desired lipid production abilities with the required lipid profile and physiological qualities. The current review mainly deals with the basic lipid metabolic pathways run in the various groups of microbes, properties of lipids they synthesized, state-of-the-art GE and ME techniques useful for the lipid overproduction in oleaginous microbes, and explain challenging futuristic developmental directions.

Keywords

Lipids / Algae / Bacteria / Fungi / Yeast / Genetic and metabolic engineering

Cite this article

Download citation ▾
Subhadeep Mondal, Suman Kumar Halder, Keshab Chandra Mondal. State-of-art engineering approaches for ameliorated production of microbial lipid. Systems Microbiology and Biomanufacturing, 2023, 4(1): 20‒38 https://doi.org/10.1007/s43393-023-00195-y

References

[1.]
Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Moellering ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol., 2017, 35(7): 647-652.
CrossRef Google scholar
[2.]
Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie., 2016, 120: 28-39.
CrossRef Google scholar
[3.]
Anantayanon J, Jeennor S, Panchanawaporn S, Chutrakul C, Laoteng K. Significance of two intracellular triacylglycerol lipases of Aspergillus oryzae in lipid mobilization: a perspective in industrial implication for microbial lipid production. Gene., 2021, 793: 145745.
CrossRef Google scholar
[4.]
Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol., 2008, 99(8): 3051-3056.
CrossRef Google scholar
[5.]
Aratboni HA, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JR. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact., 2019, 18(1): 1-17.
[6.]
Arguelles ED, Laurena AC, Monsalud RG, Martinez-Goss MR. Fatty acid profile and fuel- derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I-AU1), as potential source of renewable lipid and high-quality biodiesel. J Appl Phycol., 2018, 30(1): 411-419.
CrossRef Google scholar
[7.]
Awad D, Younes S, Glemser M, Wagner FM, Schenk G, Mehlmer N, Brueck T. Towards high-throughput optimization of microbial lipid production: from strain development to process monitoring. Sustain Energy Fuels., 2020, 4(12): 5958-5969.
CrossRef Google scholar
[8.]
Bartley ML, Boeing WJ, Corcoran AA, Holguin FO, Schaub T. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass Bioenerg., 2013, 54: 83-88.
CrossRef Google scholar
[9.]
Battah M, El-Ayoty Y, Abomohra AEF, Abd El-Ghany S, Esmael A. Effect of Mn2+, Co2+ and H2O2 on biomass and lipids of the green microalga Chlorella vulgaris as a potential candidate for biodiesel production. Annals Microbiol., 2015, 65(1): 155-162.
CrossRef Google scholar
[10.]
Berg JM, Tymoczko JL, Stryer L. Biochemistry, 2015 Freeman Macmillan
[11.]
Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R. Microbial oil–a plausible alternate resource for food and fuel application. Bioresour Technol., 2017, 233: 423-432.
CrossRef Google scholar
[12.]
Cao S, Zhou X, Jin W, Wang F, Tu R, Han S, Ma F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresour Technol., 2017, 244: 1400-1406.
CrossRef Google scholar
[13.]
Carsanba E, Papanikolaou S, Fickers P, Erten H. Lipids by Yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms., 2020, 8(7): 1054.
CrossRef Google scholar
[14.]
Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Nielsen J. Altered sterol composition renders yeast thermotolerant. Science., 2014, 346(6205): 75-78.
CrossRef Google scholar
[15.]
Chao YANG, Guo ZB, Du ZM, Yang HY, Bi YJ, Wang GQ, Tan YF. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus. Biomed Environ Sci., 2012, 25(6): 711-717.
[16.]
Chattopadhyay A, Mitra M, Maiti MK. Recent advances in lipid metabolic engineering of oleaginous yeasts. Biotechnol Adv., 2021.
CrossRef Google scholar
[17.]
Chen CY, Lee MH, Dong CD, Leong YK, Chang JS. Enhanced production of microalgal lipids using a heterotrophic marine microalga Thraustochytrium sp. BM2. Biochem Eng J., 2020, 154: 107429.
CrossRef Google scholar
[18.]
Chen H, Li M, Liu C, Zhang H, Xian M, Liu H. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Fact., 2018, 17(1): 1-14.
CrossRef Google scholar
[19.]
Chen HH, Jiang JG. Lipid accumulation mechanisms in auto-and heterotrophic microalgae. J Agric Food Chem., 2017, 65(37): 8099-8110.
CrossRef Google scholar
[20.]
Chen L, Lee J, Chen WN. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS Bioeng., 2016, 3(4): 468-492.
CrossRef Google scholar
[21.]
Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol., 2019, 37(8): 817-837.
CrossRef Google scholar
[22.]
Choi YJ, Lee SY. Microbial production of short-chain alkanes. Nature., 2013, 502(7472): 571-574.
CrossRef Google scholar
[23.]
Chowdury KH, Nahar N, Deb UK. The growth factors involved in microalgae cultivation for biofuel production: a review. Comput Water Energy Environ Eng., 2020, 9(4): 185-215.
CrossRef Google scholar
[24.]
Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Duchateau P. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun., 2014, 5(1): 1-7.
CrossRef Google scholar
[25.]
Danouche M, El Ghachtouli N, El Arroussi H. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon., 2021.
CrossRef Google scholar
[26.]
Darwish R, Gedi MA, Akepach P, Assaye H, Zaky AS, Gray DA. Chlamydomonas reinhardtii: is a potential food supplement with the capacity to outperform Chlorella and Spirulina. Appl Sci., 2020, 10(19): 6736.
CrossRef Google scholar
[27.]
Daskalaki A, Perdikouli N, Aggeli D, Aggelis G. Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl Microbiol Biotechnol., 2019, 103(20): 8585-8596.
CrossRef Google scholar
[28.]
de Jesús-Campos D, López-Elías JA, Medina-Juarez , Carvallo-Ruiz G, Fimbres-Olivarria D, Hayano-Kanashiro C. Chemical composition, fatty acid profile and molecular changes derived from nitrogen stress in the diatom Chaetoceros muelleri. Aquac Rep., 2020, 16.
CrossRef Google scholar
[29.]
Deng X, Fan X, Li P, Fei X. A photoperiod-regulating gene CONSTANS is correlated to lipid biosynthesis in Chlamydomonas reinhardtii. BioMed Res Int., 2015.
CrossRef Google scholar
[30.]
Dourou M, Aggeli D, Papanikolaou S, Aggelis G. Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol., 2018, 102(6): 2509-2523.
CrossRef Google scholar
[31.]
Dulermo T, Nicaud JM. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng., 2011, 13(5): 482-491.
CrossRef Google scholar
[32.]
El Maghraby DM, Fakhry EM. Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia, 2015, 57(1): 86-92.
CrossRef Google scholar
[33.]
El-Kantar S, Khelfa A, Vorobiev E, Koubaa M. Strategies for increasing lipid accumulation and recovery from Y. lipolytica: a review. OCL., 2021, 28: 51.
CrossRef Google scholar
[34.]
Elnar AG, Kim MG, Lee JE, Han RH, Yoon SH, Lee GY, Kim GB. Acinetobacter pullorum sp. nov., Isolated from chicken meat. J Microbiol Biotechnol., 2020, 30(4): 526-532.
CrossRef Google scholar
[35.]
El-Sheekh M, Abomohra AEF, Abd El-Azim M, Abou-Shanab R. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus. BASE., 2017.
CrossRef Google scholar
[36.]
Fakas S. Lipid biosynthesis in yeasts: a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci., 2017, 17(3): 292-302.
CrossRef Google scholar
[37.]
Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem., 2014, 62(13): 2709-2727.
CrossRef Google scholar
[38.]
Gardeli C, Athenaki M, Xenopoulos E, Mallouchos AKAA, Koutinas AA, Aggelis G, Papanikolaou S. Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Microbiol., 2017, 123(6): 1461-1477.
CrossRef Google scholar
[39.]
Gaur JP, Rai LC. Gaur JP, Rai LC. Heavy metal tolerance in algae. Algal adaptation to environmental stresses, 2001 Heidelberg Springer 363-388.
CrossRef Google scholar
[40.]
Ghasemi M, Atakishiyeva Y, Asadi A. The changes in lipid composition of Pythium irregulare LX oomycetes at a stressful situation created with crude oil. Mol Biol Res Commun., 2012, 1(1): 33-38.
[41.]
Ghogare R, Chen S, Xiong X. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Front Microbiol., 2020, 11: 1717.
CrossRef Google scholar
[42.]
Goswami L, Namboodiri MT, Kumar RV, Pakshirajan K, Pugazhenthi G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energ., 2017, 105: 400-406.
CrossRef Google scholar
[43.]
Guha TK, Wai A, Hausner G. Programmable genome editing tools and their regulation for efficient genome engineering. Comput Struct Biotechnol J., 2017, 15: 146-160.
CrossRef Google scholar
[44.]
Gupta N, Manikandan NA, Pakshirajan K. Real-time lipid production and dairy wastewater treatment using Rhodococcus opacus in a bioreactor under fed-batch, continuous and continuous cell recycling modes for potential biodiesel application. Biofuels., 2018, 9(2): 239-245.
CrossRef Google scholar
[45.]
Guschina IA, Harwood JL. Kainz M, Brett MT, Arts MT. Algal lipids and effect of the environment on their biochemistry. Lipids in aquatic ecosystems, 2009 New York Springer 1-24.
[46.]
Guschina IA, Harwood JL. Borowitzka MA, Moheimani NR. Algal lipids and their metabolism. Algae for biofuels and energy, 2013 Dordrecht Springer 17-36.
CrossRef Google scholar
[47.]
Hamilton ML, Haslam RP, Napier JA, Sayanova O. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metabolic Eng., 2014, 22: 3-9.
CrossRef Google scholar
[48.]
Hammerschlag A. Bacteriologisch-Chemische Untersuchungen der Tuberkelbacillen. Monatsh Chem., 1889, 10: 9-18.
CrossRef Google scholar
[49.]
Hao G, Barker GC. Fatty acid secretion by the white-rot fungus, Trametes versicolor. J Ind Microbiol Biotechnol., 2022, 49(1): kuab083.
CrossRef Google scholar
[50.]
Hashem AH, Abu-Elreesh G, El-Sheikh HH, Suleiman WB. Isolation, identification, and statistical optimization of a psychrotolerant Mucor racemosus for sustainable lipid production. Biomass Convers Biorefinery., 2023, 13(4): 3415-3426.
CrossRef Google scholar
[51.]
Heil CS, Wehrheim SS, Paithankar KS, Grininger M. Fatty acid biosynthesis: chain-length regulation and control. Chem BioChem., 2019, 20(18): 2298-2321.
[52.]
Hernández MA, Alvarez HM. Increasing lipid production using an NADP+-dependent malic enzyme from Rhodococcus jostii. Microbiology., 2019, 165(1): 4-14.
CrossRef Google scholar
[53.]
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. Sci Total Environ., 2020, 734.
CrossRef Google scholar
[54.]
Ivancic SM, Santek B, Beluhan S. Production of microbial lipids from lignocellulosic biomass. Adv Biofuels Bioenergy., 2018.
CrossRef Google scholar
[55.]
Jang HD, Lin YY, Yang SS. Effect of culture media and conditions on polyunsaturated fatty acids production by Mortierella alpina. Bioresour Technol., 2005, 96(15): 1633-1644.
CrossRef Google scholar
[56.]
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One., 2010, 5(5).
CrossRef Google scholar
[57.]
Jay MI, Kawaroe M, Effendi H. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/141/1/012015
[58.]
Jeon S, Koh HG, Cho JM, Kang NK, Chang YK. Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. Algal Res., 2021, 54: 102218.
CrossRef Google scholar
[59.]
Jiang M, Guo B, Wan X, Gong Y, Zhang Y, Hu C. Isolation and characterization of the diatom Phaeodactylum Δ5-elongase gene for transgenic LC-PUFA production in Pichia pastoris. Mar Drugs., 2014, 12(3): 1317-1334.
CrossRef Google scholar
[60.]
Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Balan V. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol., 2015, 33(1): 43-54.
CrossRef Google scholar
[61.]
Jones AD, Boundy-Mills KL, Barla GF, Kumar S, Ubanwa B, Balan V. Balan V. Microbial lipid alternatives to plant lipids. Microbial lipid production, 2019 New York Humana 1-32.
[62.]
Jung JH, Sirisuk P, Ra CH, Kim JM, Jeong GT, Kim SK. Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem., 2019, 77: 93-99.
CrossRef Google scholar
[63.]
Kan G, Shi C, Wang X, Xie Q, Wang M, Wang X, Miao J. Acclimatory responses to high- salt stress in Chlamydomonas (Chlorophyta, Chlorophyceae) from Antarctica. Acta Oceanologica Sin., 2012, 31(1): 116-124.
CrossRef Google scholar
[64.]
Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels., 2017, 10(1): 1-14.
CrossRef Google scholar
[65.]
Kanti A, Sukara E, Latifah K, Sukarno N, Boundy-Mills K. Indonesian oleaginous yeasts isolated from Piper betle and P. nigrum. Mycosphere., 2013, 4(3): 363-454.
[66.]
Karpagam R, Preeti R, Ashokkumar B, Varalakshmi P. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicol Environ Saf., 2015, 121: 253-257.
CrossRef Google scholar
[67.]
Kim BG, Park BG, Kim J, Kim EJ, Kim Y, Kim J, Kim JY. Application of random mutagenesis and synthetic FadR promoter for de novo production of ω-hydroxy fatty acid in Yarrowia lipolytica. Front Bioeng Biotechnol., 2021.
CrossRef Google scholar
[68.]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell., 2016, 165(6): 1332-1345.
CrossRef Google scholar
[69.]
Kohlwein SD. Analyzing and understanding lipids of yeast: a challenging endeavor. Cold Spring Harb Protoc., 2017.
CrossRef Google scholar
[70.]
Koreti D, Kosre A, Jadhav SK, Chandrawanshi NK. A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production. Bioresour Bioprocess., 2022, 9(1): 1-19.
CrossRef Google scholar
[71.]
Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol., 2016, 100(14): 6103-6117.
CrossRef Google scholar
[72.]
Kumar S, Gupta N, Pakshirajan K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng., 2015, 3(3): 1630-1636.
CrossRef Google scholar
[73.]
Kumari P, Kumar M, Reddy CRK, Jha B. Domínguez M. Algal lipids, fatty acids and sterols. Functional ingredients from algae for foods and nutraceuticals, 2013 Woodhead Publishing 87-134.
CrossRef Google scholar
[74.]
Lamers D, Visscher B, Weusthuis RA, Francke C, Wijffels RH, Lokman C. Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid. Bioresour Technol., 2019, 289.
CrossRef Google scholar
[75.]
Ledesma-Amaro R. Microbial oils: a customizable feedstock through metabolic engineering. Eur J Lipid Sci Technol., 2015, 117(2): 141-144.
CrossRef Google scholar
[76.]
Lee JE, Vadlani PV, Min D. Sustainable production of microbial lipids from lignocellulosic biomass using oleaginous yeast cultures. J Sustain Bioenergy Syst., 2017, 7(1): 36-50.
CrossRef Google scholar
[77.]
Li DW, Balamurugan S, Yang YF, Zheng JW, Huang D, Zou LG, Li HY. Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Sci Advan., 2019, 5(1): eaau3795.
CrossRef Google scholar
[78.]
Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, He N. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J Agric Food Chem., 2018, 66(21): 5382-5391.
CrossRef Google scholar
[79.]
Li Z, Sun H, Mo X, Li XXB, Tian P. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol., 2013, 97(11): 4927-4936.
CrossRef Google scholar
[80.]
Lin WR, Ng IS. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Enzyme Microbial Technol. 2020;133:109458.
[81.]
Lin H, Castro NM, Bennett GN, San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol., 2006, 71(6): 870-874.
CrossRef Google scholar
[82.]
Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, Hu Z. Overexpression of the transcription factor AtLEC1 significantly improved the lipid content of Chlorella ellipsoidea. Front Bioeng Biotechnol., 2021, 9:113
[83.]
Lopez-Lara IM, Geiger O. Bacterial lipid diversity. Biochem Biophys Acta Mol Cell Biol Lipids., 2017, 1862(11): 1287-1299.
[84.]
Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng., 2008, 10(6): 333-339.
CrossRef Google scholar
[85.]
Magdouli S, Brar SK, Blais JF. Co-culture for lipid production: advances and challenges. Biomass Bioenergy., 2016, 92: 20-30.
CrossRef Google scholar
[86.]
Mamatha SS, Ravi R, Venkateswaran G. Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioproc Technol., 2008, 1(4): 405-409.
CrossRef Google scholar
[87.]
Marella ER, Holkenbrink C, Siewers V, Borodina I. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol., 2018, 50: 39-46.
CrossRef Google scholar
[88.]
Markham KA, Alper HS. Engineering Yarrowia lipolytica for the production of cyclopropanated fatty acids. J Ind Microbiol Biotechnol., 2018, 45(10): 881-888.
CrossRef Google scholar
[89.]
Martin MA. First generation biofuels compete. New Biotechnol., 2010, 27(5): 596-608.
CrossRef Google scholar
[90.]
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol., 2003, 21(7): 796-802.
CrossRef Google scholar
[91.]
Mata TM, Almeidab R, Caetanoa NS. Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem Eng., 2013, 32:973
[92.]
Matsakas L, Giannakou M, Vörös D. Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron J Biotechnol., 2017, 30: 95-102.
CrossRef Google scholar
[93.]
Matsakas L, Sterioti AA, Rova U, Christakopoulos P. Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crops Prod., 2014, 62: 367-372.
CrossRef Google scholar
[94.]
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Advan., 2021.
CrossRef Google scholar
[95.]
Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Zhang Y. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol., 2011, 38(8): 919-25.
CrossRef Google scholar
[96.]
Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants., 2020, 9(1): 31.
CrossRef Google scholar
[97.]
Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol., 2018, 102(14): 5811-5826.
CrossRef Google scholar
[98.]
Mondal S, Halder SK, Mondal KC. Tailoring in fungi for next generation cellulase production with special reference to CRISPR/CAS system. Syst Microbiol Biomanuf., 2021.
CrossRef Google scholar
[99.]
Munoz CF, Sturme MH, D'Adamo S, Weusthuis RA, Wijffels RH. Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation. Algal Res. 2019;39:101453.
[100.]
Muro E, Atilla-Gokcumen GE, Eggert US. Lipids in cell biology: how can we understand them better?. Mol Biol Cell., 2014, 25(12): 1819-1823.
CrossRef Google scholar
[101.]
Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Hankamer B. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J., 2007, 5(6): 802-814.
CrossRef Google scholar
[102.]
Nelson DL, Cox MM. Lehninger principles of biochemistry, 2017 Macmillan
[103.]
Nicolau R, Galera-Cunha A, Lucas Y. Transfer of nutrients and labile metals from the continent to the sea by a small Mediterranean river. Chemosphere., 2006, 63(3): 469-476.
CrossRef Google scholar
[104.]
Nielsen J, Keasling JD. Engineering cellular metabolism. Cell., 2016, 164(6): 1185-1197.
CrossRef Google scholar
[105.]
Nouri H, Moghimi H, Rad MN, Ostovar M, Mehr SSF, Ghanaatian F, Talebi AF. Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: study on fatty acid profiling and prediction of biodiesel properties. Renew Energ., 2019, 135: 10-20.
CrossRef Google scholar
[106.]
Núñez-Cardona MT. Guo X. Influence of culture conditions on the fatty acids composition of green and purple photosynthetic sulphur bacteria. Advances in gas chromatography, 2014 InTech
[107.]
Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. Production strategies and applications of microbial single cell oils. Front Microbiol., 2016, 7: 1539.
CrossRef Google scholar
[108.]
Ortiz Montoya EY, Casazza AA, Aliakbarian B, Perego P, Converti A, de Carvalho JCM. Production of Chlorella vulgaris as a source of essential fatty acids in a tubularphotobioreactor continuously fed with air enriched with CO2 at different concentrations. Biotechnol Prog., 2014, 30(4): 916-922.
CrossRef Google scholar
[109.]
Ottenheim C, Nawrath M, Wu JC. Microbial mutagenesis by atmospheric and room- temperature plasma (ARTP): the latest development. Bioresourc Bioprocess., 2018, 5(1): 1-14.
CrossRef Google scholar
[110.]
Ouyang LL, Li H, Yan XJ, Xu JL, Zhou ZG. Site-directed mutagenesis from Arg195 to His of a microalgal putatively chloroplastidial glycerol-3-phosphate acyltransferase causes an increase in phospholipid levels in yeast. Front Plant Sci., 2016, 7: 286.
CrossRef Google scholar
[111.]
Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol., 2011, 113(8): 1031-1051.
CrossRef Google scholar
[112.]
Patel A, Antonopoulou I, Enman J, Rova U, Christakopoulos P, Matsakas L. Lipids detection and quantification in oleaginous microorganisms: an overview of the current state of the art. BMC Chemical Eng., 2019, 1(1): 1-25.
CrossRef Google scholar
[113.]
Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L. An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms., 2020, 8(3): 434.
CrossRef Google scholar
[114.]
Patel A, Mikes F, Bühler S, Matsakas L. Valorization of brewers’ spent grain for the production of lipids by oleaginous yeast. Molecules., 2018, 23(12): 3052.
CrossRef Google scholar
[115.]
Patel A, Sartaj K, Pruthi PA, Pruthi V, Matsakas L. Utilization of clarified butter sediment waste as a feedstock for cost-effective production of biodiesel. Foods., 2019, 8(7): 234.
CrossRef Google scholar
[116.]
Patel A, Sindhu DK, Arora N, Singh RP, Pruthi V, Pruthi PA. Biodiesel production from non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresour Technol., 2015, 197: 91-98.
CrossRef Google scholar
[117.]
Pathak VM. Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess., 2017, 4(1): 1-31.
CrossRef Google scholar
[118.]
Patnaik R, Mallick N. Microalgal biodiesel production: realizing the sustainability index. Front Bioeng Biotechnol., 2021, 9: 620777.
CrossRef Google scholar
[119.]
Peng H, He L, Haritos VS. Enhanced production of high-value cyclopropane fatty acid in yeast engineered for increased lipid synthesis and accumulation. Biotechnol J., 2019, 14(4): 1800487.
CrossRef Google scholar
[120.]
Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell., 2010, 9(4): 486-501.
CrossRef Google scholar
[121.]
Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM. Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuels., 2015, 8: 1-10.
CrossRef Google scholar
[122.]
Ramamurthy PC, Singh S, Kapoor D, Parihar P, Samuel J, Prasad R, Singh J. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems. Microb Cell Fact., 2021, 20(1): 1-11.
CrossRef Google scholar
[123.]
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advan Appl Microbiol., 2002, 51: 1-52.
CrossRef Google scholar
[124.]
Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie., 2004, 86(11): 807-815.
CrossRef Google scholar
[125.]
Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett., 2014, 36: 1557-1568.
CrossRef Google scholar
[126.]
Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, Leon R. Overexpression of acetyl- CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res., 2018, 31: 183-193.
CrossRef Google scholar
[127.]
Rossi M, Amaretti A, Raimondi S, Leonardi A. Stoytcheva M, Montero G. Getting lipids for biodiesel production from oleaginous fungi. Biodiesel-feedstocks and processing technologies, 2011 InTech.
CrossRef Google scholar
[128.]
Rubin-Pitel SB, Cho CM, Chen W, Zhao H. Yang S. Directed evolution tools in bioproduct and bioprocess development. Bioprocessing for value-added products from renewable resources, 2007 Elsevier 49-72.
CrossRef Google scholar
[129.]
Saha R, Mukhopadhyay M. Prospect of metabolic engineering in enhanced microbial lipid production. Biomass Convers Biorefin., 2021.
CrossRef Google scholar
[130.]
Saisriyoot M, Thanapimmetha A, Suwaleerat T, Chisti Y, Srinophakun P. Biomass and lipid production by Rhodococcus opacus PD630 in molasses-based media with and without osmotic-stress. J Biotechnol., 2019, 297: 1-8.
CrossRef Google scholar
[131.]
Santala S, Efimova E, Koskinen P, Karp MT, Santala V. Rewiring the wax ester production pathway of Acinetobacter baylyi ADP1. ACS Synth Biol., 2014, 3(3): 145-151.
CrossRef Google scholar
[132.]
Santek MI, Beluhan S, Santek B. Rao MN, Soneji J. Production of microbial lipids from lignocellulosic biomass. Advances biofuels bioenergy, 2018 IntechOpen 137-164.
[133.]
Schaechter M. Encyclopedia of microbiology, 2009 Academic Press
[134.]
Shabbir Hussain M, Wheeldon I, Blenner MA. A strong hybrid fatty acid inducible transcriptional sensor built from Yarrowia lipolytica upstream activating and regulatory sequences. Biotechnol J., 2017, 12(10): 1700248.
CrossRef Google scholar
[135.]
Shah AM, Mohamed H, Fazili ABA, Yang W, Song Y. Investigating the effect of alcohol dehydrogenase gene knockout on lipid accumulation in Mucor circinelloides WJ11. J Fungi., 2022, 8(9): 917.
CrossRef Google scholar
[136.]
Shaigani P, Awad D, Redai V, Fuchs M, Haack M, Mehlmer N, Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Fact., 2021, 20(1): 1-18.
CrossRef Google scholar
[137.]
Sharma KK, Schuhmann H, Schenk PM. High lipid induction in microalgae for biodiesel production. Energies., 2012, 5(5): 1532-1553.
CrossRef Google scholar
[138.]
Singh Saharan B, Grewal A, Kumar P. Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese J Biol. 2014. https://doi.org/10.1155/2014/802984.
[139.]
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev., 2016, 40(1): 133-159.
CrossRef Google scholar
[140.]
Soltani M, Metzger P, Largeau C. Fatty acid and hydroxy acid adaptation in three gram- negative hydrocarbon-degrading bacteria in relation to carbon source. Lipids, 2005, 40(12): 1263-1272.
CrossRef Google scholar
[141.]
Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR. Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Proc Biochem., 2003, 38(12): 1719-1724.
CrossRef Google scholar
[142.]
Subramaniam R, Dufreche S, Zappi M, Bajpai R. Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol., 2010, 37(12): 1271-1287.
CrossRef Google scholar
[143.]
Sun X, Li P, Liu X, Wang X, Liu Y, Turaib A, Cheng Z. Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method. J Clean Product., 2020.
CrossRef Google scholar
[144.]
Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabol Eng., 2013, 15: 1-9.
CrossRef Google scholar
[145.]
Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Shima J. Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing. Sci Rep., 2014, 4(1): 1-6.
CrossRef Google scholar
[146.]
Tapia E, Anschau A, Coradini AL, Franco TT, Deckmann AC. Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express., 2012, 2(1): 1-8.
CrossRef Google scholar
[147.]
Trehan A, Kiełbus M, Czapinski J, Stepulak A, Huhtaniemi I, Rivero-Müller A. REPLACR-mutagenesis, a one-step method for site-directed mutagenesis by recombineering. Sci Rep., 2016, 6(1): 19121.
CrossRef Google scholar
[148.]
Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci., 2013, 110(49): 19748-19753.
CrossRef Google scholar
[149.]
Tsakraklides V, Kamineni A, Consiglio AL, MacEwen K, Friedlander J, Blitzblau HG, Brevnova EE. High-oleate yeast oil without polyunsaturated fatty acids. Biotechnol Biofuels., 2018, 11(1): 1-11.
CrossRef Google scholar
[150.]
Voelker TA, Davies HM. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol., 1994, 176(23): 7320-7327.
CrossRef Google scholar
[151.]
Wakeham SG, Pease TK, Benner R. Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org Geochem., 2003, 34(6): 857-868.
CrossRef Google scholar
[152.]
Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Steinbüchel A. Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol., 2005, 55(3): 750-763.
CrossRef Google scholar
[153.]
Wang J, Peng J, Fan H, Xiu X, Xue L, Wang L, Wang R. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids. J Ind Microbiol Biotechnol., 2018, 45(11): 971-981.
CrossRef Google scholar
[154.]
Wang S, Wan W, Wang Z, Zhang H, Liu H, Arunakumara KKIU, Song X. A two-stage adaptive laboratory evolution strategy to enhance docosahexaenoic acid synthesis in oleaginous thraustochytrid. Front Nutr., 2021, 8: 795491.
CrossRef Google scholar
[155.]
Wang X, Dong HP, Wei W, Balamurugan S, Yang WD, Liu JS, Li HY. Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum. Biotechnol Biofuels., 2018, 11(1): 1-14.
CrossRef Google scholar
[156.]
Wang XW, Liang JR, Luo CS, Chen CP, Gao YH. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol., 2014, 161: 124-130.
CrossRef Google scholar
[157.]
Wei H, Wang W, Alper HS, Xu Q, Knoshaug EP, Van Wychen S, Zhan M. Ameliorating the metabolic burden of the co-expression of secreted fungal cellulases in a high lipid- accumulating Yarrowia lipolytica strain by medium C/N ratio and a chemical chaperone. Front Microbiol., 2019.
CrossRef Google scholar
[158.]
Wong YK, Ho YH, Ho KC, Leung HM, Chow KP, Yung KKL. Effect of different light sources on algal biomass and lipid production in internal leds-illuminated photobioreactor. J Mar Biol Aquacult., 2016, 2(2): 1-8.
[159.]
Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol., 2010, 101(15): 6124-6129.
CrossRef Google scholar
[160.]
Wynn JP, Hamid AA, Li Y, Ratledge C. Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology., 2001, 147(10): 2857-2864.
CrossRef Google scholar
[161.]
Xin F, Dang W, Chang Y, Wang R, Yuan H, Xie Z, Song Y. Transcriptomic analysis revealed the differences in lipid accumulation between spores and mycelia of Mucor circinelloides WJ11 under solid–state fermentation. Fermentation., 2022, 8(12): 667.
CrossRef Google scholar
[162.]
Xin Y, Shen C, She Y, Chen H, Wang C, Wei L, Xu J. Biosynthesis of triacylglycerol molecules with a tailored PUFA profile in industrial microalgae. Mol Plant., 2019, 12(4): 474-488.
CrossRef Google scholar
[163.]
Xing W, Zhang R, Shao Q, Meng C, Wang X, Wei Z, Gao Z. Effects of laser mutagenesis on microalgae production and lipid accumulation in two economically important fresh Chlorella strains under heterotrophic conditions. Agronomy., 2021, 11(5): 961.
CrossRef Google scholar
[164.]
Xu W, Jiang X, Huang L. RNA interference technology. Comprehen Biotechnol., 2019.
CrossRef Google scholar
[165.]
Xue J, Balamurugan S, Li DW, Liu YH, Zeng H, Wang L, Li HY. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metabol Eng., 2017, 41: 212-221.
CrossRef Google scholar
[166.]
Yan FX, Dong GR, Qiang S, Niu YJ, Hu CY, Meng YH. Overexpression of o 12, o 15- desaturases for enhanced lipids synthesis in Yarrowia lipolytica. Front Microbiol., 2020, 11: 289.
CrossRef Google scholar
[167.]
Yan J, Kuang Y, Gui X, Han X, Yan Y. Engineering a malic enzyme to enhance lipid accumulation in Chlorella protothecoides and direct production of biodiesel from the microalgal biomass. Biomass Bioenergy., 2019, 122: 298-304.
CrossRef Google scholar
[168.]
Yang Y, Hu B. Investigation on the cultivation conditions of a newly isolated fusarium fungal strain for enhanced lipid production. Appl Biochem Biotechnol., 2019, 187: 1220-1237.
CrossRef Google scholar
[169.]
Yang J, Astatkie T, He QS. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production. Energy Rep., 2016, 2: 211-217.
CrossRef Google scholar
[170.]
Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Wang J. Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol Biofuels., 2018, 11(1): 1-12.
CrossRef Google scholar
[171.]
Yao Y, Lu Y, Peng KT, Huang T, Niu YF, Xie WH, Li HY. Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels., 2014, 7(1): 1-9.
CrossRef Google scholar
[172.]
Ying K, Zimmerman WB, Gilmour DJ. Effects of CO and pH on growth of the microalga Dunaliella salina. J Microb Biochem Technol., 2014, 6(3): 167-73.
CrossRef Google scholar
[173.]
Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Morita N. Bacterial long-chain polyunsaturated fatty acids: their biosynthetic genes, functions, and practical use. Mar Drugs., 2016, 14(5): 94.
CrossRef Google scholar
[174.]
Yu T, Zhou YJ, Huang M, Liu Q, Pereira R, David F, Nielsen J. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell., 2018, 174(6): 1549-1558.
CrossRef Google scholar
[175.]
Zavala-Moreno A, Arreguin-Espinosa R, Pardo JP, Romero-Aguilar L, Guerra-Sánchez G. Nitrogen source affects glycolipid production and lipid accumulation in the phytopathogen fungus Ustilago maydis. Advan Microbiol., 2014, 4(13): 934.
CrossRef Google scholar
[176.]
Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol., 2012, 30(4): 354-359.
CrossRef Google scholar
[177.]
Zhang L, Xiu X, Wang Z, Jiang Y, Fan H, Su J, Wang J. Increasing long-chain dicarboxylic acid production in Candida tropicalis by engineering fatty transporters. Mol Biotechnol., 2021, 63(6): 544-555.
CrossRef Google scholar
[178.]
Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology., 2007, 153(7): 2013-2025.
CrossRef Google scholar
[179.]
Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology., 2007, 153(7): 2013-2025.
CrossRef Google scholar
[180.]
Zhang Q, Li Y, Xia L. An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol Biofuel., 2014, 7(1): 1-13.
CrossRef Google scholar
[181.]
Zhao X, Peng F, Du W, Liu C, Liu D. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioproc Biosyst Eng., 2012, 35(6): 993-1004.
CrossRef Google scholar
[182.]
Zhu LD, Li ZH, Hiltunen E. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Res Int., 2016.
CrossRef Google scholar
[183.]
Zhu S, Bonito G, Chen Y, Du Z. Oleaginous fungi in biorefineries. Encyclopedia Mycol., 2021, 2: 577-589.
CrossRef Google scholar
[184.]
Zhu Z, Hu Y, Teixeira PG, Pereira R, Chen Y, Siewers V, Nielsen J. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat Catal., 2020, 3(1): 64-74.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/