Separate expression and co-expression of MTSase and MTHase from Arthrobacter ramosus S34 in Escherichia coli BL21(DE3)

Yan Huang1,2,3, Kui Wang1,2,3, Jing Wu1,2,3, Lingqia Su1,2,3,d()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 307-317. DOI: 10.1007/s43393-023-00194-z
Original Article

Separate expression and co-expression of MTSase and MTHase from Arthrobacter ramosus S34 in Escherichia coli BL21(DE3)

  • Yan Huang1,2,3, Kui Wang1,2,3, Jing Wu1,2,3, Lingqia Su1,2,3,d()
Author information +
History +

Abstract

Maltooligosyl trehalose synthase (MTSase) and maltooligosyl trehalose hydrolase (MTHase) are used to produce trehalose, a disaccharide of interest to many different industries, from starch. MTSase and MTHase from Arthrobacter ramosus S34 were first produced using separate Escherichia coli BL21(DE3) strains. The activities obtained in a 3-L fermenter under optimized conditions were 1608.3 U mL−1 and 8766.2 U mL−1, respectively. Then, MTSase and MTHase were co-produced in E. coli BL21(DE3) using a co-expression construct. After optimizing induction conditions, the MTSase and MTHase activities produced by the superior strain reached 1827.4 U mL−1 and 2944.9 U mL−1, respectively. When the co-produced enzymes were used to synthesize trehalose from starch, a conversion rate identical to that achieved using separately produced enzymes (about 67%) was obtained. This is the first describing the co-production of the MTSase and MTHase in a 3-L fermentor. The results represented the highest MTSase production level reported to date, and the MTHase activity from co-production was sufficient for trehalose synthesis. Using co-produced enzymes during trehalose synthesis would lower costs without sacrificing yield. Therefore, this study provided a foundation for the industrial synthesis of trehalose using co-produced enzymes.

Keywords

Maltooligosyl trehalose synthase / Maltooligosyl trehalose hydrolase / Escherichia coli / Co-expression / Fermentation optimization

Cite this article

Download citation ▾
Yan Huang, Kui Wang, Jing Wu, Lingqia Su. Separate expression and co-expression of MTSase and MTHase from Arthrobacter ramosus S34 in Escherichia coli BL21(DE3). Systems Microbiology and Biomanufacturing, 2023, 4(1): 307‒317 https://doi.org/10.1007/s43393-023-00194-z

References

1.
Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol, 2002, 40(7): 871-898,
2.
Ohtake S, Wang YJ. Trehalose: current use and future applications. J Pharm Sci, 2011, 100(6): 2020-2053,
3.
Eleutherio EC, Araujo PS, Panek AD. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology, 1993, 30(6): 591-596,
4.
Kim YH, Kwon TK, Park S, Seo HS, Cheong JJ, Kim CH, Kim JK, Lee JS, Choi YD. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl Environ Microbiol, 2000, 66(11): 4620-4624, pmcid: 92358
5.
Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, Kurimoto M, Tsujisaka Y. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch-Starke, 1997, 49(1): 26-30,
6.
Yamamoto T, Maruta K, Watanabe H, Yamashita H, Kubota M, Fukuda S, Kurimoto M. Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci Biotechnol Biochem, 2001, 65(6): 1419-1423,
7.
Koh SK, Shin HJ, Kim JS, Lee DS, Lee SY. Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnol Lett, 1998, 20(8): 757-761,
8.
Eastmond PJ, Graham IA. Trehalose metabolism: a regulatory role for trehalose-6-phosphate?. Curr Opin Plant Biol, 2003, 6(3): 231-235,
9.
Lama LNB, Trincone A, Morzillo P, de Rosa M, Gambacorta A. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol Lett, 1990, 12(6): 431-432,
10.
Nakada T, Maruta K, Mitsuzumi H, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem, 1995, 59(12): 2215-2218,
11.
Nakada T, Maruta K, Tsusaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem, 1995, 59(12): 2210-2214,
12.
Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem, 1996, 60(2): 263-266,
13.
Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem, 1996, 60(4): 717-720,
14.
Zhao M, Xu XQ, Yang SL, Liu TM, Liu B. Cloning, expression and characterization of the maltooligosyl trehalose synthase from the archaeon Sulfolobus tokodaii. Pak J Pharm Sci. 2018;31(2), 599–601. https://pubmed.ncbi.nlm.nih.gov/29625930/
15.
Su LQ, Wu SX, Feng JY, Wu J. High-efficiency expression of Sulfolobus acidocaldarius maltooligosyl trehalose trehalohydrolase in Escherichia coli through host strain and induction strategy optimization. Bioprocess Biosyst Eng, 2019, 42(3): 345-354,
16.
Pascale DD, Sasso MP, Lernia ID, Lazzaro AD, Furia A, Farina MC, Rossi M, Rosa MD. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J Mol Catal B Enzym, 2001, 11(4): 777-786,
17.
Fang TY, Tseng WC, Guo MS, Shih TY, Hung XG. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic Archaeon Sulfolobus solfataricus ATCC 35092. J Agric Food Chem, 2006, 54(19): 7105-7112,
18.
Chang M. Cloning and expression of gene encoding MTHase from Corynebacterium glutamicum ATCC 13032 Chinese Academy of Agricultural Sciences Dissertation]. 2011. https://doi.org/10.1016/S0378-1119(97)00317-X.
19.
Gou X, Wang W, Liu D, Guo X, Zhang J, Tang R, Li D, Hu H. Expression of MTHase gene in Pichia pastoris and its genetic stability. Chin J Appl Environ Biol, 2010, 16(3): 408-411,
20.
Wang K, Su L, Wu J, Chen S. Enzymatic properties of recombinant Athrobacter ramosus S34 MTSase and MTHase and optimization of application conditions for production of trehalose. Food Ferment Ind, 2017, 43(7): 1-6,
21.
Takashi S, Seisuke I. Process for producing a powder containing crystalline alpha,alpha-trehalose dihydrate. 2012. https://www.freepatentsonline.com/EP2759600.html. Accessed 14 June 2023.
22.
Cheng J, Wu D, Chen S. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). J Agric Food Chem, 2011, 59(8): 3797,
23.
Donovan RS, Robinson CW, Glick BR. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol, 1996, 16(3): 145-154,
24.
Simmons LC, Yansura DG. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol, 1996, 14(5): 629-634,
25.
Li ZF, Su LQ, Wang L, Liu ZG, Gu ZB, Chen J, Wu J. Novel insight into the secretory expression of recombinant enzymes in Escherichia coli. Process Biochem, 2014, 49(4): 599-603,
26.
Zou C, Duan XG, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Biores Technol, 2014, 172: 174-179,
27.
Su LQ, Huang Y, Wu J. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. Biores Technol, 2015, 198: 63-69,
28.
Duan XG, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Biores Technol, 2013, 146: 379-385,
29.
Diamant S, Rosenthal D, Azem A, Eliahu N, Ben-Zvi AP, Goloubinoff P. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol, 2003, 49(2): 401-410,
Funding
Innovative Research Group Project of the National Natural Science Foundation of China(31771916); Fundamental Research Funds for the Central Universities(5812050205226750)

Accesses

Citations

Detail

Sections
Recommended

/