1. | Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol, 2002, 40(7): 871-898, |
2. | Ohtake S, Wang YJ. Trehalose: current use and future applications. J Pharm Sci, 2011, 100(6): 2020-2053, |
3. | Eleutherio EC, Araujo PS, Panek AD. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology, 1993, 30(6): 591-596, |
4. | Kim YH, Kwon TK, Park S, Seo HS, Cheong JJ, Kim CH, Kim JK, Lee JS, Choi YD. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl Environ Microbiol, 2000, 66(11): 4620-4624, pmcid: 92358 |
5. | Mukai K, Tabuchi A, Nakada T, Shibuya T, Chaen H, Fukuda S, Kurimoto M, Tsujisaka Y. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch-Starke, 1997, 49(1): 26-30, |
6. | Yamamoto T, Maruta K, Watanabe H, Yamashita H, Kubota M, Fukuda S, Kurimoto M. Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci Biotechnol Biochem, 2001, 65(6): 1419-1423, |
7. | Koh SK, Shin HJ, Kim JS, Lee DS, Lee SY. Trehalose synthesis from maltose by a thermostable trehalose synthase from Thermus caldophilus. Biotechnol Lett, 1998, 20(8): 757-761, |
8. | Eastmond PJ, Graham IA. Trehalose metabolism: a regulatory role for trehalose-6-phosphate?. Curr Opin Plant Biol, 2003, 6(3): 231-235, |
9. | Lama LNB, Trincone A, Morzillo P, de Rosa M, Gambacorta A. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol Lett, 1990, 12(6): 431-432, |
10. | Nakada T, Maruta K, Mitsuzumi H, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of a novel enzyme, maltooligosyl trehalose trehalohydrolase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem, 1995, 59(12): 2215-2218, |
11. | Nakada T, Maruta K, Tsusaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem, 1995, 59(12): 2210-2214, |
12. | Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem, 1996, 60(2): 263-266, |
13. | Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem, 1996, 60(4): 717-720, |
14. | Zhao M, Xu XQ, Yang SL, Liu TM, Liu B. Cloning, expression and characterization of the maltooligosyl trehalose synthase from the archaeon Sulfolobus tokodaii. Pak J Pharm Sci. 2018;31(2), 599–601. https://pubmed.ncbi.nlm.nih.gov/29625930/ |
15. | Su LQ, Wu SX, Feng JY, Wu J. High-efficiency expression of Sulfolobus acidocaldarius maltooligosyl trehalose trehalohydrolase in Escherichia coli through host strain and induction strategy optimization. Bioprocess Biosyst Eng, 2019, 42(3): 345-354, |
16. | Pascale DD, Sasso MP, Lernia ID, Lazzaro AD, Furia A, Farina MC, Rossi M, Rosa MD. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J Mol Catal B Enzym, 2001, 11(4): 777-786, |
17. | Fang TY, Tseng WC, Guo MS, Shih TY, Hung XG. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic Archaeon Sulfolobus solfataricus ATCC 35092. J Agric Food Chem, 2006, 54(19): 7105-7112, |
18. | |
19. | Gou X, Wang W, Liu D, Guo X, Zhang J, Tang R, Li D, Hu H. Expression of MTHase gene in Pichia pastoris and its genetic stability. Chin J Appl Environ Biol, 2010, 16(3): 408-411, |
20. | Wang K, Su L, Wu J, Chen S. Enzymatic properties of recombinant Athrobacter ramosus S34 MTSase and MTHase and optimization of application conditions for production of trehalose. Food Ferment Ind, 2017, 43(7): 1-6, |
21. | |
22. | Cheng J, Wu D, Chen S. High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). J Agric Food Chem, 2011, 59(8): 3797, |
23. | Donovan RS, Robinson CW, Glick BR. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J Ind Microbiol, 1996, 16(3): 145-154, |
24. | Simmons LC, Yansura DG. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol, 1996, 14(5): 629-634, |
25. | Li ZF, Su LQ, Wang L, Liu ZG, Gu ZB, Chen J, Wu J. Novel insight into the secretory expression of recombinant enzymes in Escherichia coli. Process Biochem, 2014, 49(4): 599-603, |
26. | Zou C, Duan XG, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Biores Technol, 2014, 172: 174-179, |
27. | Su LQ, Huang Y, Wu J. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine. Biores Technol, 2015, 198: 63-69, |
28. | Duan XG, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes. Biores Technol, 2013, 146: 379-385, |
29. | Diamant S, Rosenthal D, Azem A, Eliahu N, Ben-Zvi AP, Goloubinoff P. Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol, 2003, 49(2): 401-410, |