Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste

P. Chellapandi, S. Saranya

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 542-563. DOI: 10.1007/s43393-023-00191-2
Review

Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste

Author information +
History +

Abstract

Biogas reactors operating with protein-based biomass have a high methane potential and industrial value. Protein-rich materials, including gelatin processing and ossein factory waste, are suitable feedstocks for use in ammonia-tolerant biogas digesters. However, the anaerobic digestion of these materials is limited by the accumulation of ammonia, hydrogen sulfide, and lactic acid. A stable biogas starter is required for efficient biogas production from protein-based mass and process performance. Hence, various ammonia-tolerant biogas inocula, immobilization carriers used, culture formulations, and stater stability are comprehensively summarized in this review. We also discuss engineered methanogens and mutants to improve methane productivity. The genera Methanoculleus and Methanosarcina are the dominant ammonia-tolerant methanogens studied in different biogas plants; however, their ammonia-tolerant molecular mechanisms remain unclear. Recent advances in omics technologies, systems, and synthetic biology of methanogens have been reviewed and discussed for the design and development of methanogenic inocula. We described the genome-centric characteristics of methanogenic consortia to improve the process efficiency under the desired environmental conditions. We also focus on the perspective of methanogenic culture development for the co-production of acetone–butanol–ethanol and methane as well as odor control strategies. A novel metabolic scaffold “Protein Catabolism-Directed Methanogenesis” was discovered from a methanogenic culture using a systems biology approach. This review offers new insights into the feasibility of ammonia-tolerant biogas starters and engineering synthetic pathways for recycling gelatin processing waste into biofuels in the energy sector.

Keywords

Methane / Gelatin industry waste / Methanogens / Ammonia / Genomics / Starter culture / Systems biology

Cite this article

Download citation ▾
P. Chellapandi, S. Saranya. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Systems Microbiology and Biomanufacturing, 2023, 4(2): 542‒563 https://doi.org/10.1007/s43393-023-00191-2

References

[1.]
Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci USA, 2018, 115: E1166-E1173.
[2.]
Ahammad SZ, Davenport RJ, Read LF, Gomes J, Sreekrishnan TR, Dolfing J. Rational immobilization of methanogens in high cell density bioreactors. RSC Adv, 2013, 3:774-781.
[3.]
Akinyemi TS, Shao N, Lyu Z, Drake IJ, Liu Y, Whitman WB. Tuning gene expression by phosphate in the methanogenic archaeon Methanococcus maripaludis. ACS Synth Biol, 2021, 10: 3028-3039.
[4.]
Alarcón-Vivero M, Moena NR, Gonzalez F, Jopia-Contreras P, Aspé E, Briones HU, Fernandez KS. Anaerobic biofilm enriched with an ammonia tolerant methanogenic consortium to improve wastewater treatment in the fishing industry. Biotech Lett, 2020, 44(2): 239-251.
[5.]
Alawi M, Shapiro N, Woyke T, Horn F, Bakermans C, Wagner D. Genome sequence of Methanosarcina soligelidi SMA-21, isolated from siberian permafrost-affected soil. Genome Announc, 2015, 3: e00270-e315.
[6.]
Amani T, Nosrati M, Sreekrishnan TR. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects-a review. Environ Rev, 2010, 18:255-278.
[7.]
Ananou S, Bougarne Z, Manni L, El Ghachtouli N. Production of biogas and ethanol from stationery wastes using a microbial consortium isolated from soil as starter culture. Univ Sci, 2021, 26:318-335.
[8.]
Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Tice H, Dalin E, Barry K, Saunders E, Han C, Brettin T, Detter JC, Bruce D, Mikhailova N, Pitluck S, Hauser L, Land M, Lucas S, Richardson P, Whitman WB, Kyrpides NC, et al. Complete genome sequence of Methanoculleus marisnigri Romesser et al. 1981 type strain JR1. Stand Genom Sci, 2009, 1:189-196.
[9.]
Andreides M, Pokorná-Krayzelová L, Říhová Ambrožová J, Volcke EIP, Bartáček J. Key parameters influencing hydrogen sulfide removal in microaerobic sequencing batch reactor. Biochem Eng J, 2021, 168
[10.]
Antonakoudis A, Barbosa R, Kotidis P, Kontoravdi C. The era of big data: genome-scale modelling meets machine learning. Comp Struct Biotechnol J, 2020, 18:3287-3300.
[11.]
Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res, 2008, 47:5227-5233.
[12.]
Asakawa S, Nagaoka K. Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms. Int J Syst Evol Microbiol, 2003, 53: 1551-1552.
[13.]
Bajagain R, Gautam P, Le TT, Dahal RH, Kim J, Jeong SW. Isolation and screening of odor-reducing microbes from swine manure and its role in reducing ammonia release in combination with surfactant foam. Appl Sci. 2022;12(4):1806.
[14.]
Balsa-Canto E, Bandiera L, Menolascina F. Optimal experimental design for systems and synthetic biology using AMIGO2. Methods Mol Biol, 2021, 2229: 221-239.
[15.]
Basile-Doelsch I, Balesdent J, Pellerin S. Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences, 2020, 17:5223-5242.
[16.]
Bassani I, Kougias PG, Treu L, Angelidaki I. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environ Sci Technol. 2015;49(20):12585–93.
[17.]
Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G. Autotrophic carbon fixation in archaea. Nat Rev Microbiol, 2010, 8: 447-460.
[18.]
Bharathi M, Chellapandi P. Phylogenomic proximity and metabolic discrepancy of Methanossarcina mazei Go1 across methanosarcinal genomes. Biosystems, 2017, 155: 20-28.
[19.]
Bharathi M, Chellapandi P. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol, 2017, 107: 293-304.
[20.]
Bharathi M, Chellapandi P. Comparative analysis of differential proteome-wide protein-protein interaction network of Methanobrevibacter ruminantium M1. Biochem Biophys Rep, 2019, 20
[21.]
Bonk F, Popp D, Weinrich S, Sträuber H, Kleinsteuber S, Harms H, Centler F. Ammonia inhibition of anaerobic volatile fatty acid degrading microbial communities. Front. Microbiol. 2018;30;9:2921.
[22.]
Britz TJ, Lamprecht C, Sigge GO. Dealing with environmental issues. In Britz RK, Robinson TJ, editors. Advanced dairy science and technology. Blackwell: Oxford; 2008. pp. 262–93.
[23.]
Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (ech) or NAD+ (Rnf) as electron acceptors: A historical review. Front Microbiol, 2018, 9: 401.
[24.]
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels, 2016, 9:1-7.
[25.]
Campanaro S, Treu L, Rodriguez RLM, Kovalovszki A, Ziels RM, Maus I, Zhu X, Kougias PG, Basile A, Luo G, Schlüter A, Konstantinidis KT, Angelidaki I. New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnol Biofuels, 2020, 13: 25.
[26.]
Capson-Tojo G, Moscoviz R, Astals S, Robles Á, Steyer J-P. Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion. Renew Sustain Energy Rev, 2020, 117
[27.]
Cardona L, Mazéas L, Chapleur O. Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. Chemosphere, 2021, 262.
[28.]
Carr S, Aldridge J, Buan NR. Isoprene production from municipal wastewater biosolids by engineered archaeon Methanosarcina acetivorans. Appl Sci, 2021, 11:3342
[29.]
Chaiprasert P, Hudayah N, Auphimai C. Efficacies of various anaerobic starter seeds for biogas production from different types of wastewater. BioMed Res Int, 2017, 2017: 2782850.
[30.]
Chakraborty N, Sarkar GM, Lahiri SC. Effect of physical irradiation and chemical mutagen treatment on methane production by methanogenic bacteria. World J Microbiol Biotechnol, 2003, 19:145-150.
[31.]
Chartrain M, Bhatnagar L, Zeikus JG. Microbial ecophysiology of whey biomethanation: comparison of carbon transformation parameters, species composition, and starter culture performance in continuous culture. Appl Environ Microbiol, 1987, 53: 1147-1156.
[32.]
Chauhan A, Ogram A. Evaluation of support matrices for immobilization of anaerobic consortia for efficient carbon cycling in waste regeneration. Biochem Biophys Res Commun, 2005, 327: 884-893.
[33.]
Chellapandi P. Molecular evolution of methanogens based on their metabolic facets. Front. Biol., 2011, 6:490-503.
[34.]
Chellapandi P. Computational studies on enzyme-substrate complexes of methanogenesis for revealing their substrate binding affinities to direct the reverse reactions. Protein Pept Lett, 2013, 20: 265-278.
[35.]
Chellapandi P. In silico analysis of heavy metal assimilation behaviors in the genome of Methanosarcina barkeri str. Fusaro Curr Bioinform, 2015, 10:59-68.
[36.]
Chellapandi P, Bharathi M, Prathiviraj R, Sasikala R, Vikraman M. Genome-scale metabolic model as a virtual platform to reveal the ecological importance of methanogenic archaea. Curr Biotechnol, 2017, 6:149-160.
[37.]
Chellapandi P, Prabaharan D, Uma L. A preliminary study on co-digestion of ossein factory waste for methane production. Euras J Biosci., 2008, 2:110-4.
[38.]
Chellapandi P, Bharathi M, Sangavai C, Prathiviraj R. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: a review. Vet Anim Sci. 2018;6:86–94.
[39.]
Chellapandi P, Prabaharan D, Uma L. Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol, 2010, 162: 524-535.
[40.]
Chellapandi P, Prathiviraj R. Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 Util., 2020, 40
[41.]
Chellapandi P, Uma L. Evaluation of methanogenic activity of biogas plant slurry on ossein factory wastes. J Environ Sci Eng, 2012, 54: 10-13.
[42.]
Chellapandi P, Uma L. Co-digestion of ossein factory waste for methane production in batch. Elixer Biotechnol, 2012, 42:6383-6385.
[43.]
Chen PW, Theisen MK, Liao JC. Metabolic systems modeling for cell factories improvement. Curr Opin Biotechnol, 2017, 46: 114-119.
[44.]
Chen Y, Banerjee D, Mukhopadhyay A, Petzold CJ. Systems and synthetic biology tools for advanced bioproduction hosts. Curr Opin Biotechnol, 2020, 64: 101-109.
[45.]
Córdoba V, Fernández M, Santalla E. The effect of different inoculums on anaerobic digestion of swine wastewater. J Environ Chem Eng. 2016;1;4(1):115–22.
[46.]
Corro G, Sánchez N, Pal U, Bañuelos F. Biodiesel production from waste frying oil using waste animal bone and solar heat. Waste Manag, 2016, 47: 105-113.
[47.]
Cordoba V, Fernández M, Santalla E. The effect of different inoculums on anaerobic digestion of swinewastewater. Journal of Environmental. Chemical Engineering., 2016, 4(1): 115-122.
[48.]
Costantini M, Bacenetti J, Coppola G, Orsi L, Ganzaroli A, Guarino M. Improvement of human health and environmental costs in the European Union by air scrubbers in intensive pig farming. J Clean Prod, 2020, 275
[49.]
Cremonez PA, Teleken JG, Weiser Meier TR, Alves HJ. Two-stage anaerobic digestion in agroindustrial waste treatment: a review. J Environ Manag, 2021, 281
[50.]
Cuperlovic-Culf M. Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites, 2018, 8: 4.
[51.]
D’hoe K, Vet S, Faust K, Moens F, Falony G, Gonze D, Lloréns-Rico V, Gelens L, Danckaert J, De Vuyst L, Raes J. Integrated culturing, modeling and transcriptomics uncovers complex interactions and emergent behavior in a three-species synthetic gut community. eLife. 2018;7:e37090.
[52.]
Dahl Jønson B, Ujarak Sieborg M, Tahir Ashraf M, Yde L, Shin J, Shin SG, Mi Triolo J. Direct inoculation of a biotrickling filter for hydrogenotrophic methanogenesis. Bioresour Technol, 2020, 318.
[53.]
Demirel B, Yenigün O. Two-phase anaerobic digestion processes: a review. J Chem Technol Biotechnol, 2002, 77:743-755.
[54.]
Detman A, Bucha M, Treu L, Chojnacka A, Pleśniak Ł, Salamon A, Łupikasza E, Gromadka R, Gawor J, Gromadka A, Drzewicki W, Jakubiak M, Janiga M, Matyasik I, Błaszczyk MK, Jędrysek MO, Campanaro S, Sikora A. Evaluation of acidogenesis products effect on biogas production performed with metagenomics and isotopic approaches. Biotechnol Biofuels, 2021, 14: 125.
[55.]
Duan H, He P, Shao L, F. Functional genome-centric view of the CO-driven anaerobic microbiome. ISME J., 2021, 15: 2906-2919.
[56.]
Enzmann F, Mayer F, Rother M, Holtmann D. Methanogens: biochemical background and biotechnological applications. AMB Exp, 2018, 8:1
[57.]
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science, 2015, 350: 434-438.
[58.]
Fagbohungbe MO, Herbert BM, Hurst L, Li H, Usmani SQ, Semple KT. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour Technol, 2016, 216: 142-149.
[59.]
Farooq R, Rehman F, Baig S, Sadique M, Khan S, Farooq U, Rehman A, Farooq A, Pervez A, Hassan M, Shaukat SF. The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge. World Appl Sci J, 2009, 6:234-237.
[60.]
Ferdeș M, Zăbavă , Paraschiv G, Ionescu M, Dincă MN, Moiceanu G. Food waste management for biogas production in the context of sustainable development. Energies, 2022, 15:6268
[61.]
Fesenfeld L, Rudolph L, Bernauer T. Policy framing, design and feedback can increase public support for costly food waste regulation. Nat Food, 2022, 3: 227-235.
[62.]
Fotidis I, Angelidaki I. Innovative bioaugmentation strategies to tackle ammonia inhibition in anaerobic digestion process-MicrobStopNH3: Final Project Report; Technical University of Denmark; 2019.
[63.]
Fotidis IA, Treu L, Angelidaki I. Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes. J Clean Prod, 2017, 10(166): 1305-1313.
[64.]
Fotidis IA, Wang H, Fiedel NR, Luo G, Karakashev DB, Angelidaki I. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate. Environ Sci Technol, 2014, 48: 7669-7676.
[65.]
Frank JA, Arntzen MØ, Sun L, Hagen LH, McHardy AC, Horn SJ, Eijsink VG, Schnürer A, Pope PB. Novel syntrophic populations dominate an ammonia-tolerant methanogenic microbiome. mSystems. 2016;1:e00092–16.
[66.]
Gallert C, Bauer S, Winter J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl Microbiol Biotechnol, 1998, 50: 495-501.
[67.]
Gao S, Zhao M, Chen Y, Yu M, Ruan W. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition. Bioresour Technol, 2015, 198: 372-379.
[68.]
Gawand P, Hyland P, Ekins A, Martin VJJ, Mahadevan R. Novel approach to engineer strains for simultaneous sugar utilization. Metab Eng, 2013, 20: 63-72.
[69.]
Gerardi MH. The microbiology of anaerobic digesters. Hoboken: Wiley; 2003.
[70.]
Gu Y, Chen XH, Liu ZG, Zhou XF, Zhang YL. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol, 2014, 158: 149-155.
[71.]
Hanaki K, Hirunmasuwan S, Matsuo T. Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Water Res, 1994, 28:877-885.
[72.]
Huang Y, Cai B, Dong H, Li H, Yuan J, Xu H, Wu H, Xu Z, Sun D, Dang Y, Holmes DE. Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin. Sci Total Environ, 2022, 10(851)
[73.]
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. Biotechnol Biofuels, 2018, 11: 185.
[74.]
Jegannathan KR, Viruthagiri T. Ossein waste: a potential raw material for protease production. Int J Chem Reactor Eng. 2009;7.
[75.]
Kamira B, Shi LL, Fan LM, Zhang C, Zheng Y, Song C, Meng SL, Hu GD, Bing XW, Chen ZJ, Xu P. Methane-generating ammonia oxidizing nitrifiers within bio-filters in aquaculture tanks. AMB Express, 2018, 8: 140.
[76.]
Karube I, Kuriyama S, Matsunaga T, Suzuki S. Methane production from wastewaters by immobilized methanogenic bacteria. Biotechnol Bioeng, 1980, 22:847-857.
[77.]
Khalid ZB, Siddique MNI, Nayeem A, Adyel TM, Ismail SB, Ibrahim MZ. Biochar application as sustainable precursors for enhanced anaerobic digestion: a systematic review. J Environ Chem Eng, 2021, 9
[78.]
Khan AW, Meek E. Immobilization of syntrophic culture of propionate degrading and methanogenetic bacteria present in cellulose-enriched culture. Biomass, 1985, 8:195-204.
[79.]
Kim NK, Lee SH, Kim Y, Park HD. Current understanding and perspectives in anaerobic digestion based on genome-resolved metagenomic approaches. Bioresour Technol, 2022, 344.
[80.]
Kovács E, Wirth R, Maróti G, Bagi Z, Nagy K, Minárovits J, Rákhely G, Kovács KL. Augmented biogas production from protein-rich substrates and associated metagenomic changes. Bioresour Technol, 2015, 178: 254-261.
[81.]
Kovács E, Wirth R, Maróti G, Bagi Z, Rákhely G, Kovács KL. Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS ONE, 2013, 8.
[82.]
Kumari D, Singh R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew Sustain Energy Rev, 2018, 90:877-891.
[83.]
Kurade MB, Saha S, Salama ES, Patil SM, Govindwar SP, Jeon BH. Acetoclastic methanogenesis led by Methanosarcina in anaerobic codigestion of fats, oil and grease for enhanced production of methane. Bioresour Technol, 2019, 272: 351-359.
[84.]
Kurth JM, op den Camp HJM, Welte CU. Several ways one goal-methanogenesis from unconventional substrates. Appl Microbiol Biotechnol, 2020, 104: 6839-6854.
[85.]
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brunea A. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus methanoplasma termitum”. Appl Environ Microbiol, 2015, 81: 1338-1352.
[86.]
Lessner DJ, Lhu L, Wahal CS, Ferry JG An engineered methanogenic pathway derived from the domains Bacteria and Archaea. mBio. 2010;1:e00243–10
[87.]
Li J, He J, Si B, Liu Z, Zhang C, Wang Y, Xing XH. A pilot study of biohythane production from cornstalk via two-stage anaerobic fermentation. Int J Hydrog Energy, 2020, 45:31719-31731.
[88.]
Li Q, Li L, Rejtar T, Lessner DJ, Karger BL, Ferry JG. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol, 2006, 188: 702-710.
[89.]
Liu Y, Yuan Y, Wang W, Wachemo AC, Zou D. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity. J Biosci Bioeng, 2019, 128: 723-732.
[90.]
Łochyńska M, Frankowski J. The biogas production potential from silkworm waste. Waste Manag, 2018, 1(79): 564-570.
[91.]
Lyu Z, Jain R, Smith P, Fetchko T, Yan Y, Whitman WB. Engineering the autotroph Methanococcus maripaludis for geraniol production. ACS Synth Biol, 2016, 5: 577-581.
[92.]
Magnúsdóttir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr Opin Biotechnol, 2018, 51: 90-96.
[93.]
Mahdy A, Fotidis IA, Mancini E, Ballesteros M, González-Fernández C, Angelidaki I. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour Technol, 2017, 225: 272-278.
[94.]
Manzoor S, Schnürer A, Bongcam-Rudloff E, Müller B. Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Stand Genom Sci, 2016, 11:80
[95.]
Marchetti R, Vasmara C, Orsi A. Inoculum production from pig slurry for potential use in agricultural biogas plants. Sustain Energy Technol Assess, 2022, 52
[96.]
Masilamani D, Madhan B, Shanmugam G, Palanivel S, Narayan B. Extraction of collagen from raw trimming wastes of tannery: a waste to wealth approach. J Clean Prod, 2016, 113:338-344.
[97.]
Maslova O, Senko O, Stepanov N, Gladchenko M, Gaydamaka S, Akopyan A, Polikarpova P, Lysenko S, Anisimov A, Efremenko E. Formation and use of anaerobic consortia for the biotransformation of sulfur-containing extracts from pre-oxidized crude oil and oil fractions. Biores Technol, 2021, 1(319)
[98.]
Maus I, Rumming M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J, Pühler A, Schlüter A, Sczyrba A, Klocke M. Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors. Biotechnol Biofuels, 2018, 11: 167.
[99.]
Maus I, Wibberg D, Stantscheff R, Stolze Y, Blom J, Eikmeyer FG, Fracowiak J, König H, Pühler A, Schlüter A. Insights into the annotated genome sequence of Methanoculleus bourgensis MS2(T), related to dominant methanogens in biogas-producing plants. J Biotechnol, 2015, 201: 43-53.
[100.]
McAnulty MJ, Poosarla VG, Li J, Soo VW, Zhu F, Wood TK. Metabolic engineering of Methanosarcina acetivorans for lactate production from methane. Biotechnol Bioeng, 2017, 114: 852-861.
[101.]
Meng X, Sui Q, Liu J, Yu D, Wang Y, Wei Y. Relieving ammonia inhibition by zero-valent iron (ZVI) dosing to enhance methanogenesis in the high solid anaerobic digestion of swine manure. Waste Manag, 2020, 118: 452-462.
[102.]
Miller KE, Herman T, Philipinanto DA, Davis SC. Anaerobic digestion of food waste, brewery waste, and agricultural residues in an off-grid continuous reactor. Sustainability, 2021, 13:6509
[103.]
Mohd Yasin NH, Ikegami A, Wood TK, Yu CP, Haruyama T, Takriff MS, Maeda T. Oceans as bioenergy pools for methane production using activated methanogens in waste sewage sludge. Appl Energy, 2017, 202:399-407.
[104.]
Montalvo S, Martinez J, Castillo A, Huiliñir C, Borja R, García V, Salazar R. Sustainable energy for a winery through biogas production and its utilization: a Chilean case study. Sustain Energy Technol Assess, 2020, 37
[105.]
Moodley P, Gueguim Kana EB. Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production. Int J, 2018, 21:107-116.
[106.]
Nacke H, Kirck LL, Schwarz S, Schneider D, Poehlein A, Daniel R.. Metagenome sequences of a wastewater treatment plant digester sludge-derived enrichment culture. Microbiol Resour Announc. 2020;9(32):e00712–20.
[107.]
Nguyen LN, Kumar J, Vu MT, Mohammed JAH, Pathak N, Commault AS, Sutherland D, Zdarta J, Tyagi VK, Nghiem LD. Biomethane production from anaerobic co-digestion at wastewater treatment plants: a critical review on development and innovations in biogas upgrading techniques. Sci Total Environ, 2021, 765.
[108.]
Nikel PI, Mattanovich D. Microbial cell factories: a biotechnology journey across species. Essays Biochem, 2021, 65:143-145.
[109.]
Offie I, Piadeh F, Behzadian K, Campos LC, Yaman R. Development of an artificial intelligence-based framework for biogas generation from a micro anaerobic digestion plant. Waste Manag, 2023, 1(158): 66-75.
[110.]
Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. Biotechnol Biofuels, 2021, 14: 159.
[111.]
Opulencia RB, Bose A, Metcalf WW. Physiology and posttranscriptional regulation of methanol:coenzyme M methyltransferase isozymes in Methanosarcina acetivorans C2A. J Bacteriol, 2009, 191: 6928-6935.
[112.]
Orsi E, Claassens NJ, Nikel PI, Lindner SN. Growth-coupled selection of synthetic modules to accelerate cell industry development. Nat Commun, 2021, 12: 5295.
[113.]
Pan X, Zhao L, Li C, Angelidaki I, Lv N, Ning J, Cai G, Zhu G. Deep insights into the network of acetate metabolism in anaerobic digestion: focusing on syntrophic acetate oxidation and homoacetogenesis. Water Res, 2021, 190.
[114.]
Park JH, Yoon JJ, Kumar G, Jin YS, Kim SH. Effects of acclimation and pH on ammonia inhibition for mesophilic methanogenic microflora. Waste Manag, 2018, 80: 218-223.
[115.]
Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sánchez JC, Valencia-Molina KJ, Torres-Lozada P. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag, 2018, 71: 342-349.
[116.]
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv, 2021, 47.
[117.]
Perman E, Schnürer A, Björn A, Moestedt J. Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass Bioenergy, 2022, 161
[118.]
Peydayesh M, Bagnani M, Soon WL, Mezzenga R. Turning food protein waste into sustainabletechnologies. Chem Rev. 2022.
[119.]
Prathiviraj R, Chellapandi P. Modelling a global rtoegulary network of Methanothermobacter thermautotrophicus strain ΔH. Netw. Model. Anal. Health Inform Bioinformatics. 2020;9:17.
[120.]
Prathiviraj R, Berchmans S, Chellapandi P. Analysis of modularity in proteome-wide protein interaction networks of Methanothermobacter thermautotrophicus strain ΔH across metal-loving bacteria. J Proteins Proteom, 2019, 10:179-190.
[121.]
Prathiviraj R, Chellapandi P. Comparative genomic analysis reveals starvation survival systems in Methanothermobacter thermautotrophicus ΔH. Anaerobe, 2020, 64.
[122.]
Prathiviraj R, Chellapandi P. Modelling a global regulatory network of Methanothermobacter thermautotrophicus strain ΔH. Netw Model Anal Health Inform Bioinform, 2020, 9:17
[123.]
Rajagopal R, Massé DI, Singh G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol, 2013, 143: 632-641.
[124.]
Rajesh Reddy B, Gupta S, Phanden RK. Development of an industry 4.0-enabled biogas plant for sustainable development. Lecture notes in mechanical engineering. Singapore: Springer; 2021. pp. 379–92.
[125.]
Rajput AA, Sheikh Z. Effect of inoculum type and organic loading on biogas production of sunflower meal and wheat straw. Sustain Environ Res, 2019, 29:4
[126.]
Ramsay IR, Pullammanappallil PC. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 2001, 12: 247-257.
[127.]
Rohlin L, Gunsalus RP. Carbon-dependent control of electron transfer and central carbon pathway genes for methane biosynthesis in the Archaean, Methanosarcina acetivorans strain C2A. BMC Microbiol, 2010, 10: 62.
[128.]
Ruggiero G, Lanzillo F, Raganati F, Russo ME, Salatino P, Marzocchella A. Bioreactor modelling for syngas fermentation: kinetic characterization. Food Bioprod Process, 2022, 134:1-18.
[129.]
Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX. Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. Bioresour Technol, 2018, 250: 513-522.
[130.]
Saha S, Basak B, Hwang JH, Salama ES, Chatterjee PK, Jeon BH. Microbial symbiosis: a network towards biomethanation. Trends Microbiol, 2020, 28: 968-984.
[131.]
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P. Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture. AMB Express, 2019, 9: 82.
[132.]
Sangavai C, Chellapandi P. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: an insight into model-driven systems engineering. Biotechnol Rep (Amst), 2017, 16: 32-43.
[133.]
Sangavai C, Chellapandi P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol, 2020, 60: 882-893.
[134.]
Sangavai C, Chellapandi P. Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics, 2021, 113: 4196-4205.
[135.]
Sangavai C, Prathiviraj R, Chellapandi P. Functional prediction, characterization and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe, 2020, 61.
[136.]
Sappl J, Harders M, Rauch W. Machine learning for quantile regression of biogas production rates in anaerobic digesters. Sci Total Environ, 2023, 10(872)
[137.]
Satpathy P, Steinigeweg S, Siefert E, Cypionka H. Effect of lactate and starter inoculum on biogas production from fresh maize and maize silage. Adv Microbiol, 2017, 07:358-376.
[138.]
Satpathy S, Mishra S. Extractive separation studies of la (III) and Ni(II) in the presence of lactic acid using DEHPA in petrofin. Sep Purif Technol, 2017, 179:513-522.
[139.]
Sawalha H, Maghalseh M, Qutaina J, Junaidi K, Rene ER. Removal of hydrogen sulfide from biogas using activated carbon synthesized from different locally available biomass wastes—a case study from Palestine. Bioengineered, 2020, 11: 607-618.
[140.]
Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature, 2010, 465: 606-608.
[141.]
Schmidt JE, Ahring BK. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors. Appl Environ Microbiol, 1999, 65: 1050-1054.
[142.]
Schnürer A. Biogas production: microbiology and technology. Adv Biochem Eng Biotechnol, 2016, 156: 195-234.
[143.]
Senko O, Gladchenko M, Maslova O, Efremenko E. Long-term storage and use of artificially immobilized anaerobic sludge as a powerful biocatalyst for conversion of various wastes including those containing xenobiotics to biogas. Catalysts, 2019, 9:326
[144.]
Sołowski G. Microbial biogas production from pork gelatine. Hydrogen, 2022, 3:179-196.
[145.]
Sim YB, Jung JH, Baik JH, Park JH, Kumar G, Rajesh Banu JR, Kim SH. Dynamic membrane bioreactor for high rate continuous biohydrogen production from algal biomass. Bioresour. Technol., 2021, 340.
[146.]
Sercu B, Peixoto J, Demeestere K, Elst TV, Langenhove HV (2006) Odors treatment: biological technologies. InOdors food ind. Springer, Boston. pp 125–58.
[147.]
Shirsath AP, Henchion MM. Bovine and ovine meat co-products valorisation opportunities: a systematic literature review. Trends Food Sci Technol, 2021, 118:57-70.
[148.]
Silva AJ, Hirasawa JS, Varesche MB, Foresti E, Zaiat M. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe, 2006, 12: 93-98.
[149.]
Sivakumar G, Saravanaperumal M, Srinivasaperumal AP, Kalaisudarson S. Effect of bone sludge a by-product of ossein industry on the economics of ragi cultivation. J Pharmacogn Phytochem, 2019, 8:2099-2101.
[150.]
Sołowski G. Microbial biogas production from pork gelatine. Hydrogen, 2022, 3:179-196.
[151.]
Sun H, Yang Z, Shi G, Arhin SG, Papadakis VG, Goula MA, Zhou L, Zhang Y, Liu G, Wang W. Methane production from acetate, formate and H2/CO2 under high ammonia level: modified ADM1 simulation and microbial characterization. Sci Total Environ, 2021, 20(783)
[152.]
Szaja A, Montusiewicz A, Lebiocka M, Bis M. The effect of brewery spent grain application on biogas yields and kinetics in co-digestion with sewage sludge. PeerJ, 2020, 8.
[153.]
Tada C, Tsukahara K, Sawayama S. Illumination enhances methane production from thermophilic anaerobic digestion. Appl Microbiol Biotechnol, 2006, 71: 363-368.
[154.]
Thor S, Peterson JR, Luthey-Schulten Z. Genome-scale metabolic modeling of Archaea lends insight into diversity of metabolic function. Archaea, 2017, 2017: 9763848.
[155.]
Tian H, Fotidis IA, Mancini E, Angelidaki I. Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia. Bioresour Technol, 2017, 232: 1-9.
[156.]
Timmers PH, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ. Reverse methanogenesis and respiration in methanotrophic archaea. Archaea, 2017, 2017: 1654237.
[157.]
Toldrá F, Reig M, Mora L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci, 2021, 181.
[158.]
Torres A, Padrino S, Brito A, Díaz L Biogas production from anaerobic digestion of solid microalgae residues generated on different processes of microalgae-to-biofuel production. Biomass Convers. Biorefin. 2021;1–4
[159.]
Tsoi R, Dai Z, You L. Emerging strategies for engineering microbial communities. Biotechnol Adv, 2019, 37.
[160.]
Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol, 2016, 1: 16170.
[161.]
Ventorino V, Romano I, Pagliano G, Robertiello A, Pepe O. Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste. Waste Manag, 2018, 73: 69-77.
[162.]
Volk MJ, Lourentzou I, Mishra S, Vo LT, Zhai C, Zhao H. Biosystems design by machine learning. ACS Synth Biol, 2020, 9: 1514-1533.
[163.]
Wagner D, Schirmack J, Ganzert L, Morozova D, Mangelsdorf K. Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int J Syst Evol Microbiol, 2013, 63: 2986-2991.
[164.]
Wang H, Fotidis IA, Angelidaki I. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS Microbiol Ecol. 2015;91(11).
[165.]
Wang H, Larson RA, Runge T. Impacts to hydrogen sulfide concentrations in biogas when poplar wood chips, steam treated wood chips, and biochar are added to manure-based anaerobic digestion systems. Bioresour Technol Rep, 2019, 7
[166.]
Wang H, Sun H, Ren H, Cao G, Xie G, Xing D, Ren N, Liu B. Metagenomic reveals the methanogenesis metabolic mechanism of high-solids anaerobic digestion of human feces under gradient domestication. Chem Eng J, 2023, 460
[167.]
Wang P, Li Y, Reddy CK. Machine learning for survival analysis: a survey. ACM Comput Surv, 2019, 51:1-36.
[168.]
Wang Y, Huntington T, Scown CD. Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste. ACS Sustain Chem Eng, 2021, 9(38): 12990-13000.
[169.]
Weiß S, Lebuhn M, Andrade D, Zankel A, Cardinale M, Birner-Gruenberger R, Somitsch W, Ueberbacher BJ, Guebitz GM. Activated zeolite—suitable carriers for microorganisms in anaerobic digestion processes?. Appl Microbiol Biotechnol, 2013, 97: 3225-3238.
[170.]
Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. ISME J, 2017, 12: 495-507.
[171.]
Westerholm M, Levén L, Schnürer A. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol, 2012, 78: 7619-7625.
[172.]
Wilkens C, Busk PK, Pilgaard B, Zhang WJ, Nielsen KL, Nielsen PH, Lange L. Diversity of microbial carbohydrate-active enzymes in Danish anaerobic digesters fed with wastewater treatment sludge. Biotechnol Biofuels, 2017, 10(1): 1-4.
[173.]
Xu X, Liu Y, Du G, Ledesma-Amaro R, Liu L. Microbial chassis development for natural product biosynthesis. Trends Biotechnol, 2020, 38: 779-796.
[174.]
Yan M, Treu L, Campanaro S, Tian H, Zhu X, Khoshnevisan B, Tsapekos P, Angelidaki I, Fotidis IA. Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chem Eng J, 2020, 401
[175.]
Yan M, Zhu X, Treu L, Ravenni G, Campanaro S, Goonesekera EM, Ferrigno R, Jacobsen CS, Zervas A, Angelidaki I, Fotidis IA. Comprehensive evaluation of different strategies to recover methanogenic performance in ammonia-stressed reactors. Biores Technol, 2021, 1(336)
[176.]
Yang HJ, Yang ZM, Xu XH, Guo RB. Increasing the methane production rate of hydrogenotrophic methanogens using biochar as a biocarrier. Bioresour Technol, 2020, 302.
[177.]
Yang Z, Wang W, Liu C, Zhang R, Liu G. Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Water Res, 2019, 155: 214-224.
[178.]
Yeo HC, Selvarajoo K. Machine learning alternative to systems biology should not solely depend on data. 2022;Brief Bioinform. 23:bbac436
[179.]
Yeshanew MM, Paillet F, Barrau C, Frunzo L, Lens PNL, Esposito G, Escudie R, Trably E. Co-production of hydrogen and methane from the organic fraction of municipal solid waste in a pilot scale dark fermenter and methanogenic biofilm reactor. Front Environ Sci, 2018, 6:41
[180.]
Yu D, Zhang J, Chulu B, Yang M, Nopens I, Wei Y. Ammonia stress decreased biomarker genes of acetoclastic methanogenesis and second peak of production rates during anaerobic digestion of swine manure. Bioresour Technol, 2020, 317.
[181.]
Yuan HY, Ding LJ, Zama EF, Liu PP, Hozzein WN, Zhu YG. Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environ Sci Technol, 2018, 52: 12198-12207.
[182.]
Yan M, Fotidis IA, Tian H, Khoshnevisan B, Treu L, Tsapekos P, Angelidaki I. Acclimatization contributes tostable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. Bioresour. Technol., 2019, 286.
[183.]
Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh Banu J. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Bioresour Technol, 2021, 332.
[184.]
Zampieri G, Vijayakumar S, Yaneske E, Angione C. Machine and deep learning meet genome-scale metabolic modeling. PLOS Comp Biol, 2019, 15
[185.]
Zellner G, Winter J. Secondary alcohols as hydrogen donors for CO2-reduction by methanogens. FEMS Microbiol Lett, 1987, 44:323-328.
[186.]
Zhang C, Li J, Liu C, Liu X, Wang J, Li S, Fan G, Zhang L. Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion. Bioresour Technol, 2013, 149: 353-358.
[187.]
Zhang C, Wang F, Pei M, Qiu L, Qiang H, Yao Y. Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates. Int J Environ Res Public Health, 2019, 16: 2239.
[188.]
Zhang J, Wang Z, Lu T, Liu J, Wang Y, Shen P, Wei Y. Response and mechanisms of the performance and fate of antibiotic resistance genes to nanomagnetite during anaerobic digestion of swine manure. J Hazard Mater, 2019, 366: 192-201.
[189.]
Zhang W, Zhao C, Cao W, Sun S, Hu C, Liu J, Zhao Y. Removal of pollutants from biogas slurry and CO2 capture in biogas by microalgae-based technology: a systematic review. Environ Sci Pollut Res Int, 2020, 27: 28749-28767.
[190.]
Zhao S, Thakur N, Salama E, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Li X. Potential applications of protein-rich waste: progress in energy management and material recovery. Resour Conserv Recycl, 2022, 182
Funding
Science and Engineering Research Board, Government of India(EEQ/2020/000095))

Accesses

Citations

Detail

Sections
Recommended

/