Progress of 3-ketosteroid Δ1-dehydrogenases for steroid production

Bo Zhang, Deng-Feng Zhou, Meng-Juan Li, Jia-Hui Lan, Hui Li, Ming-Long Shao, Zhi-Qiang Liu, Yu-Guo Zheng

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 631-660. DOI: 10.1007/s43393-023-00190-3
Review

Progress of 3-ketosteroid Δ1-dehydrogenases for steroid production

Author information +
History +

Abstract

3-ketosteroid Δ1-dehydrogenases (Δ1-KstDs) are FAD-dependent and substrate-inducing enzymes, which catalyze the introduction of double bonds between C1 and C2 atoms of the A ring of 3-ketosteroid substrates. They are essential in the initial stages of the steroid core's breakdown. Additionally, Δ1-KstDs are particularly intriguing for applications in pharmaceutical manufacturing, environmental bioremediation, and the etiology of infectious illnesses. A wide range of microorganisms, particularly bacteria from the phylum Actinobacteria, have Δ1-KstDs. Δ1-KstDs can be classified into at least seven separate groups based on the sequence data in NCBI, and the enzymes in each group exhibit unique structural and catalytic properties. Understanding these properties completely is crucial for utilizing and developing Δ1-KstDs in metabolic engineering and enzyme engineering. This review describes and explains the biochemical and enzymatic characteristics of Δ1-KstDs based on a phylogenetic tree. To assist in the selection of highly active enzymes for engineering applications, the three-dimensional structures of Δ1-KstDs associated with enzyme mechanisms are stressed. The biotechnological application of microbial Δ1-KstDs is also covered in this article, including genetic engineering based on metabolic strains and related genetic modification techniques for creating new productive industrial strains, the development and transformation of the heterologous expression system, the molecular modification and the optimization of catalytic conditions, and the use of microbial fermentation to increase product yield. Furthermore, we also highlight the recent development in the use of isolated Δ1-KstDs combined with a FAD cofactor regeneration system. We conclude by summarizing the concepts and techniques used in subsequent research and application development. All of these knowledge might serve as a guide for new mining and industrial applications in Δ1-KstDs.

Keywords

3-ketosteroid Δ1-dehydrogenase / Catalytic mechanism / Sterol degradation / Heterologous expression / Molecular modification

Cite this article

Download citation ▾
Bo Zhang, Deng-Feng Zhou, Meng-Juan Li, Jia-Hui Lan, Hui Li, Ming-Long Shao, Zhi-Qiang Liu, Yu-Guo Zheng. Progress of 3-ketosteroid Δ1-dehydrogenases for steroid production. Systems Microbiology and Biomanufacturing, 2023, 4(2): 631‒660 https://doi.org/10.1007/s43393-023-00190-3

References

[1.]
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol, 2012, 94(6): 1423-1447.
CrossRef Google scholar
[2.]
Zhao A, Zhang X, Li Y, et al. Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv. 2021; 53: 107860. https://doi.org/10.1016/j.biotechadv.2021.107860.
[3.]
Fernández-Cabezón L, Galán B, García JL. New insights on steroid biotechnology. Front Microbiol, 2018, 9: 958.
CrossRef Google scholar
[4.]
Kreit J. Aerobic catabolism of sterols by microorganisms: key enzymes that open the 3-ketosteroid nucleus. FEMS Microbiol Lett, 2019.
CrossRef Google scholar
[5.]
Molnár I, Choi KP, Yamashita M, et al. Molecular cloning, expression in Streptomyces lividans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-delta 1-dehydrogenase, 3-ketosteroid-delta 5-isomerase and a hypothetical regulatory protein. Mol Microbiol, 1995, 15(5): 895-905.
CrossRef Google scholar
[6.]
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Delta(1)-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol, 2019, 191: 105366.
CrossRef Google scholar
[7.]
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Delta(1)-dehydrogenases in biotechnology. Biotechnol Adv, 2021, 49: 107751.
CrossRef Google scholar
[8.]
Van Der Geize R, Grommen A W, Hessels G I, et al. The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog. 2011; 7(8): e1002181. https://doi.org/10.1371/journal.ppat.1002181.
[9.]
Van Der Geize R, Yam K, Heuser T, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA, 2007, 104(6): 1947-1952.
CrossRef Google scholar
[10.]
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA, 2008, 105(11): 4376-4380.
CrossRef Google scholar
[11.]
Von Bargen K, Haas A. Molecular and infection biology of the horse pathogen Rhodococcus equi. FEMS Microbiol Rev, 2009, 33(5): 870-891.
CrossRef Google scholar
[12.]
Van Der Geize R, Hessels GI, Nienhuis-Kuiper M, et al. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB. Appl Environ Microbiol, 2008, 74(23): 7197-7203.
CrossRef Google scholar
[13.]
Van Der Geize R, Hessels GI, Van Gerwen R, et al. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol, 2002, 45(4): 1007-1018.
CrossRef Google scholar
[14.]
Zhang W, Shao M, Rao Z, et al. Bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Δ1-dehydrogenase from Mycobacterium neoaurum JC-12. J Steroid Biochem Mol Biol, 2013, 135: 36-42.
CrossRef Google scholar
[15.]
Wang X, Feng J, Zhang D, et al. Characterization of new recombinant 3-ketosteroid-Δ(1)-dehydrogenases for the biotransformation of steroids. Appl Microbiol Biotechnol, 2017, 101(15): 6049-6060.
CrossRef Google scholar
[16.]
Hu Y, Van Der Geize R, Besra GS, et al. 3-Ketosteroid 9alpha-hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol, 2010, 75(1): 107-121.
CrossRef Google scholar
[17.]
Brzezinska M, Szulc I, Brzostek A, et al. The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis. BMC Microbiol, 2013, 13: 43.
CrossRef Google scholar
[18.]
Wei W, Wang FQ, Fan SY, et al. Inactivation and augmentation of the primary 3-ketosteroid-{delta}1- dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol, 2010, 76(13): 4578-4582.
CrossRef Google scholar
[19.]
Wei W, Fan SY, Wang FQ, et al. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Delta1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol, 2014, 30(7): 1947-1954.
CrossRef Google scholar
[20.]
Yuan CY, Ma ZG, Zhang JX, et al. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Microb Cell Fact, 2021, 20(1): 229.
CrossRef Google scholar
[21.]
Tang R, Shen Y, Wang M, et al. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation. Bioprocess Biosyst Eng, 2019, 42(6): 933-940.
CrossRef Google scholar
[22.]
Tang R, Shen Y, Xia M, et al. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone. Bioresour Technol, 2019, 283: 242-250.
CrossRef Google scholar
[23.]
Mao S, Wang JW, Liu F, et al. Engineering of 3-ketosteroid-∆(1)-dehydrogenase based site-directed saturation mutagenesis for efficient biotransformation of steroidal substrates. Microb Cell Fact, 2018, 17(1): 141.
CrossRef Google scholar
[24.]
Zhang R, Xu X, Cao H, et al. Purification, characterization, and application of a high activity 3-ketosteroid-Δ(1)-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol, 2019, 103(16): 6605-6616.
CrossRef Google scholar
[25.]
Wang Y, Zhang R, Feng J, et al. A new 3-ketosteroid-delta(1)-dehydrogenase with high activity and broad substrate scope for efficient transformation of hydrocortisone at high substrate concentration. Microorganisms, 2022, 10(3): 508.
CrossRef Google scholar
[26.]
Giorgi V, Menendez P, Garcia-Carnelli C. Microbial transformation of cholesterol: reactions and practical aspects-an update. World J Microbiol Biotechnol, 2019, 35(9): 131.
CrossRef Google scholar
[27.]
Shtratnikova VY, Schelkunov MI, Fokina VV, et al. Genome-wide bioinformatics analysis of steroid metabolism-associated genes in Nocardioides simplex VKM Ac-2033D. Curr Genet, 2016, 62(3): 643-656.
CrossRef Google scholar
[28.]
Chen MM, Wang FQ, Lin LC, et al. Characterization and application of fusidane antibiotic biosynethsis enzyme 3-ketosteroid-1-dehydrogenase in steroid transformation. Appl Microbiol Biotechnol, 2012, 96(1): 133-142.
CrossRef Google scholar
[29.]
Bragin E Y, Shtratnikova V Y, Dovbnya D V, et al. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol. 2013; 138: 41–53. https://doi.org/10.1016/j.jsbmb.2013.02.016.
[30.]
Zhang R, Liu X, Wang Y, et al. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Microb Cell Fact, 2018, 17(1): 77.
CrossRef Google scholar
[31.]
Luo JM, Cui HL, Jia HC, et al. Identification, biological characteristics, and active site residues of 3-ketosteroid δ(1)-dehydrogenase homologues from arthrobacter simplex. J Agric Food Chem, 2020, 68(35): 9496-9512.
CrossRef Google scholar
[32.]
Fernandez De Las Heras L, Van Der Geize R, Drzyzga O, et al. Molecular characterization of three 3-ketosteroid-Delta(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. J Steroid Biochem Mol Biol. 2012; 132(3–5): 271–281. https://doi.org/10.1016/j.jsbmb.2012.06.005.
[33.]
Van Der Geize R, Hessels GI, Van Gerwen R, et al. Targeted disruption of the kstD gene encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microbiol, 2000, 66(5): 2029-2036.
CrossRef Google scholar
[34.]
Van Der Geize R, Hessels GI, Van Gerwen R, et al. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett, 2001, 205(2): 197-202.
CrossRef Google scholar
[35.]
Galan B, Uhia I, Garcia-Fernandez E, et al. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol, 2017, 10(1): 138-150.
CrossRef Google scholar
[36.]
Shtratnikova VY, Schelkunov MI, Fokina VV, et al. Genome-wide transcriptome profiling provides insight on cholesterol and lithocholate degradation mechanisms in nocardioides simplex VKM Ac-2033D. Genes-Basel, 2020, 11(10): 1229.
CrossRef Google scholar
[37.]
Shtratnikova VY, Schelkunov MI, Fokina VV, et al. Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac-2033D to phytosterol and cortisone 21-acetate. BMC Biotechnol, 2021, 21(1): 7.
CrossRef Google scholar
[38.]
Itagaki E, Matushita H, Hatta T. Steroid transhydrogenase activity of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. J Biochem, 1990, 108(1): 122-127.
CrossRef Google scholar
[39.]
Itagaki E, Wakabayashi T, Hatta T. Purification and characterization of 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. Biochim Biophys Acta, 1990, 1038(1): 60-67.
CrossRef Google scholar
[40.]
Wojtkiewicz A M, Wojcik P, Procner M, et al. The efficient Delta(1)-dehydrogenation of a wide spectrum of 3-ketosteroids in a broad pH range by 3-ketosteroid dehydrogenase from Sterolibacterium denitrificans. J Steroid Biochem Mol Biol. 2020; 202: 105731. https://doi.org/10.1016/j.jsbmb.2020.105731.
[41.]
Shao M, Zhang X, Rao Z, et al. A mutant form of 3-ketosteroid-Δ(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. J Ind Microbiol Biotechnol, 2016, 43(5): 691-701.
CrossRef Google scholar
[42.]
Qin N, Shen Y, Yang X, et al. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Δ(1)-dehydrogenase from Mycobacterium neoaurum. World J Microbiol Biotechnol, 2017, 33(7): 146.
CrossRef Google scholar
[43.]
Rohman A, Van Oosterwijk N, Thunnissen AM, et al. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem, 2013, 288(49): 35559-35568.
CrossRef Google scholar
[44.]
Matsushita H, Itagaki E. Essential histidine residue in 3-ketosteroid-delta 1-dehydrogenase. J Biochem, 1992, 111(5): 594-599.
CrossRef Google scholar
[45.]
Fujii C, Morii S, Kadode M, et al. Essential tyrosine residues in 3-ketosteroid-delta(1)-dehydrogenase from Rhodococcus rhodochrous. J Biochem, 1999, 126(4): 662-667.
CrossRef Google scholar
[46.]
Van Der Geize R, Hessels GI, Dijkhuizen L. Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Delta(1)-dehydrogenase isoenzyme. Microbiology, 2002, 148(Pt 10): 3285-3292.
CrossRef Google scholar
[47.]
Xie R, Shen Y, Qin N, et al. Genetic differences in ksdD influence on the ADD/AD ratio of Mycobacterium neoaurum. J Ind Microbiol Biotechnol, 2015, 42(4): 507-513.
CrossRef Google scholar
[48.]
Van Oosterwijk N, Knol J, Dijkhuizen L, et al. Cloning, overexpression, purification, crystallization and preliminary X-ray analysis of 3-ketosteroid Delta(4)-(5alpha)-dehydrogenase from Rhodococcus jostii RHA1. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67(Pt 10): 1269-1273.
CrossRef Google scholar
[49.]
Guevara G, Fernandez De Las Heras L, Perera J, et al. Functional differentiation of 3-ketosteroid Delta(1)-dehydrogenase isozymes in Rhodococcus ruber strain Chol-4. Microb Cell Fact. 2017; 16(1): 42. https://doi.org/10.1186/s12934-017-0657-1.
[50.]
Fernández De Las Heras L, Van Der Geize R, Drzyzga O, et al. Molecular characterization of three 3-ketosteroid-Δ1-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. J Steroid Biochem. 2012; 132(3): 271–281. https://doi.org/10.1016/j.jsbmb.2012.06.005.
[51.]
Knol J, Bodewits K, Hessels GI, et al. 3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J, 2008, 410(2): 339-346.
CrossRef Google scholar
[52.]
Li W, Ge F, Zhang Q, et al. Identification of gene expression profiles in the actinomycete Gordonia neofelifaecis grown with different steroids. Genome, 2014, 57(6): 345-353.
CrossRef Google scholar
[53.]
Wójcik P, Glanowski M, Mrugała B, et al. Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ(1)-Dehydrogenase from Sterolibacterium denitrificans─the role of a new putative membrane-associated domain and proton-relay system in catalysis. Biochemistry-US, 2023, 62(3): 808-823.
CrossRef Google scholar
[54.]
Wójcik P, Glanowski M, Wojtkiewicz AM, et al. Universal capability of 3-ketosteroid Δ(1)-dehydrogenases to catalyze Δ(1)-dehydrogenation of C17-substituted steroids. Microb Cell Fact, 2021, 20(1): 119.
CrossRef Google scholar
[55.]
Levy HR, Talalay P. Bacterial oxidation of steroids. J Biol Chem, 1959, 234(8): 2014-2021.
CrossRef Google scholar
[56.]
Ringold HJ, Hayano M, Stefanovic V. Concerning the stereochemistry and mechanism of the bacterial C-1,2 dehydrogenation of steroids. J Biol Chem, 1963, 238(6): 1960-1965.
CrossRef Google scholar
[57.]
Rohman A, Van Oosterwijk N, Dijkstra BW. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2012, 68(Pt 5): 551-556.
CrossRef Google scholar
[58.]
Van Oosterwijk N, Knol J, Dijkhuizen L, et al. Structure and catalytic mechanism of 3-ketosteroid-Δ4-(5α)-dehydrogenase from Rhodococcus jostii RHA1 genome. J Biol Chem, 2012, 287(37): 30975-30983.
CrossRef Google scholar
[59.]
Choi KP, Molnár I, Murooka Y. Secretory overproduction of Arthrobacter simplex 3-ketosteroid delta 1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl Microbiol Biotechnol, 1995, 43(6): 1044-1049.
CrossRef Google scholar
[60.]
Morii S, Fujii C, Miyoshi T, et al. 3-Ketosteroid-delta1-dehydrogenase of Rhodococcus rhodochrous: sequencing of the genomic DNA and hyperexpression, purification, and characterization of the recombinant enzyme. J Biochem, 1998, 124(5): 1026-1032.
CrossRef Google scholar
[61.]
Li Y, Lu F, Sun T, et al. Expression of ksdD gene encoding 3-ketosteroid-Delta1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis. Lett Appl Microbiol, 2007, 44(5): 563-568.
CrossRef Google scholar
[62.]
Plesiat P, Grandguillot M, Harayama S, et al. Cloning, sequencing, and expression of the Pseudomonas testosteroni gene encoding 3-oxosteroid delta 1-dehydrogenase. J Bacteriol, 1991, 173(22): 7219-7227.
CrossRef Google scholar
[63.]
Wei W, Fan SY, Wang FQ, et al. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol, 2014, 30(7): 1947-1954.
CrossRef Google scholar
[64.]
Zhang X, Wu D, Yang T, et al. Over-expression of Mycobacterium neoaurum 3-ketosteroid-Δ1-dehydrogenase in Corynebacterium crenatum for efficient bioconversion of 4-androstene-3,17-dione to androst-1,4-diene-3,17-dione. Electron J Biotechn, 2016, 24: 84-90.
CrossRef Google scholar
[65.]
Golańska E, Brzostek A, Kiatpapan P, et al. Characterisation of a new host-vector system for fast-growing mycobacteria. Acta Microbiol Pol, 1998, 47(4): 335-343.
[66.]
Croxatto HB. Progestin implants. Steroids, 2000, 65(10–11): 681-685.
CrossRef Google scholar
[67.]
Fernandez De Las Heras L, Garcia Fernandez E, Maria Navarro Llorens J, et al. Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as rhodococcus ruber strain Chol-4. Curr Microbiol. 2009; 59(5): 548–553. https://doi.org/10.1007/s00284-009-9474-z.
[68.]
Liu Y, Chen G, Ge F, et al. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microb Biot, 2010, 27(4): 759-765.
CrossRef Google scholar
[69.]
Shao M, Zhang X, Rao Z, et al. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. J Ind Microbiol Biotechnol, 2019, 46(5): 635-647.
CrossRef Google scholar
[70.]
Yao K, Xu LQ, Wang FQ, et al. Characterization and engineering of 3-ketosteroid- big up tri, open1-dehydrogenase and 3-ketosteroid-9alpha-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9alpha-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Metab Eng, 2014, 24: 181-191.
CrossRef Google scholar
[71.]
Liu C, Shao M, Osire T, et al. Identification of bottlenecks in 4-androstene-3,17-dione/1,4-androstadiene-3,17-dione synthesis by Mycobacterium neoaurum JC-12 through comparative proteomics. J Biosci Bioeng, 2021, 131(3): 264-270.
CrossRef Google scholar
[72.]
Zhang L, Zhang X, Shao M, et al. [Overexpressing 3-ketosteroid-Δ1-dehydrogenase for degrading phytosterols into androst-1,4-diene-3,17-dione. Chin J Biotechnol, 2015, 31(11): 1589-1600.
[73.]
Zhang H, Tian Y, Wang J, et al. Construction of engineered Arthrobacter simplex with improved performance for cortisone acetate biotransformation. Appl Microbiol Biotechnol, 2013, 97(21): 9503-9514.
CrossRef Google scholar
[74.]
Manosroi A, Saowakhon S, Manosroi J. Enhancement of androstadienedione production from progesterone by biotransformation using the hydroxypropyl-beta-cyclodextrin complexation technique. J Steroid Biochem Mol Biol, 2008, 108(1–2): 132-136.
CrossRef Google scholar
[75.]
Shen YB, Wang M, Li HN, et al. Influence of hydroxypropyl-beta-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum. J Ind Microbiol Biotechnol, 2012, 39(9): 1253-1259.
CrossRef Google scholar
[76.]
Andriushina VA, Rodina NV, Stytsenko TC, et al. Conversion of soybean sterols into 3,17-diketosteroids using actinobacteria Mycobacterium neoaurum, Pimelobacter simplex, and Rhodococcus erythropolis. Prikl Biokhim Mikrobiol, 2011, 47(3): 297-301.
[77.]
Luo J, Song Z, Ning J, et al. The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Appl Microbiol Biotechnol, 2018, 102(21): 9331-9350.
CrossRef Google scholar
[78.]
Song B, Zhou Q, Xue HJ, et al. IrrE improves organic solvent tolerance and delta(1)-dehydrogenation productivity of Arthrobacter simplex. J Agric Food Chem, 2018, 66(20): 5210-5220.
CrossRef Google scholar
[79.]
Luo JM, Zhu WC, Cao ST, et al. Improving biotransformation efficiency of arthrobacter simplex by enhancement of cell stress tolerance and enzyme activity. J Agric Food Chem, 2021, 69(2): 704-716.
CrossRef Google scholar
[80.]
Cheng HJ, Sun YH, Chang HW, et al. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng, 2020, 43(5): 895-908.
CrossRef Google scholar
[81.]
Mao S, Chen Y, Sun J, et al. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb Technol. 2021; 146: 109777. https://doi.org/10.1016/j.enzmictec.2021.109777.
[82.]
Alagöz D, Çelik A, Yildirim D, et al. Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. J Mol Catal B: Enzym, 2016, 130: 40-47.
CrossRef Google scholar
[83.]
Liang S, Wu X-L, Xiong J, et al. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: an update review. Coordin Chem Rev, 2020, 406.
CrossRef Google scholar
[84.]
Andryushina VA, Karpova NV, Druzhinina AV, et al. Novel immobilized biocatalyst for microbiological synthesis of pharmaceutical steroids. Prikl Biokhim Mikrobiol, 2015, 51(5): 472-481.
[85.]
Hou Y, Hossain GS, Li J, et al. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of alpha-keto acids. Biotechnol Bioeng, 2017, 114(9): 1928-1936.
CrossRef Google scholar
[86.]
Shao M, Sha Z, Zhang X, et al. Efficient androst-1,4-diene-3,17-dione production by co-expressing 3-ketosteroid-Δ(1) -dehydrogenase and catalase in Bacillus subtilis. J Appl Microbiol, 2017, 122(1): 119-128.
CrossRef Google scholar
[87.]
Xu XW, Gao XQ, Feng JX, et al. Influence of temperature on nucleus degradation of 4-androstene-3, 17-dione in phytosterol biotransformation by Mycobacterium sp. Lett Appl Microbiol, 2015, 61(1): 63-68.
CrossRef Google scholar
[88.]
Andor A, Jekkel A, Hopwood DA, et al. Generation of useful insertionally blocked sterol degradation pathway mutants of fast-growing mycobacteria and cloning, characterization, and expression of the terminal oxygenase of the 3-ketosteroid 9alpha-hydroxylase in Mycobacterium smegmatis mc(2)155. Appl Environ Microbiol, 2006, 72(10): 6554-6559.
CrossRef Google scholar
[89.]
Yam K C, D'angelo I, Kalscheuer R, et al. Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog. 2009; 5(3): e1000344. https://doi.org/10.1371/journal.ppat.1000344.
[90.]
Wang X, Hua C, Xu X, et al. Two-step bioprocess for reducing nucleus degradation in phytosterol bioconversion by Mycobacterium neoaurum NwIB-R10(hsd4A). Appl Biochem Biotechnol, 2019, 188(1): 138-146.
CrossRef Google scholar
[91.]
Zajkoska P, Rebroš M, Rosenberg M. Biocatalysis with immobilized Escherichia coli. Appl Microbiol Biotechnol, 2013, 97(4): 1441-1455.
CrossRef Google scholar
[92.]
Karpova NV, Andriushina VA, Iaderets VV, et al. [Transformation of delta4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium. Prikl Biokhim Mikrobiol, 2011, 47(4): 429-435.
[93.]
Shao M, Zhang X, Rao Z, et al. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS One. 2015; 10(9): e0137658. https://doi.org/10.1371/journal.pone.0137658.
[94.]
Restaino OF, Barbuto Ferraiuolo S, Perna A, et al. Biotechnological transformation of hydrocortisone into 16alpha-hydroxyprednisolone by coupling arthrobacter simplex and streptomyces roseochromogenes. Molecules, 2020, 25(21): 4912.
CrossRef Google scholar
[95.]
Tang R, Shen Y, Wang M, et al. Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation. Bioproc Biosyst Eng, 2019, 42(6): 933-940.
CrossRef Google scholar
[96.]
Rohman A, Van Oosterwijk N, Thunnissen AM, et al. Crystal structure and site-directed mutagenesis of 3-ketosteroid Delta1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem, 2013, 288(49): 35559-35568.
CrossRef Google scholar
[97.]
Shao M, Zhang X, Rao Z, et al. A mutant form of 3-ketosteroid-Delta(1)-dehydrogenase gives altered androst-1,4-diene-3, 17-dione/androst-4-ene-3,17-dione molar ratios in steroid biotransformations by Mycobacterium neoaurum ST-095. J Ind Microbiol Biotechnol, 2016, 43(5): 691-701.
CrossRef Google scholar
[98.]
Qin N, Shen Y, Yang X, et al. Site-directed mutagenesis under the direction of in silico protein docking modeling reveals the active site residues of 3-ketosteroid-Delta(1)-dehydrogenase from Mycobacterium neoaurum. World J Microbiol Biotechnol, 2017, 33(7): 146.
CrossRef Google scholar
[99.]
Zhang R, Xu X, Cao H, et al. Purification, characterization, and application of a high activity 3-ketosteroid-Delta(1)-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol, 2019, 103(16): 6605-6616.
CrossRef Google scholar
[100.]
Mao S, Guo Q, Xu P, et al. Biochemical and structural characterization of 3-ketosteroid-Δ1-dehydrogenase, a candidate enzyme for efficient bioconversion of steroids. J Chem Technol Biotechnol, 2019, 94(1): 309-316.
CrossRef Google scholar
[101.]
Luo JM, Cui HL, Jia HC, et al. Identification, Biological Characteristics, and Active Site Residues of 3-Ketosteroid Delta(1)-Dehydrogenase Homologues from Arthrobacter simplex. J Agric Food Chem, 2020, 68(35): 9496-9512.
CrossRef Google scholar
[102.]
Wei L, Wu X. Heterologous expression and site-directed mutagenesis of 3-ketosteroid- Delta1-dehydrogenase gene from Gordonia neofelifaecis. Chin J New Drugs, 2020, 29(18): 2083-2088.
[103.]
Wang Z, Zhao F, Chen D, et al. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem, 2006, 41(3): 557-561.
CrossRef Google scholar
[104.]
Pérez C, Falero A, Duc HL, et al. A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol and Biotechnol, 2006, 33(8): 719-723.
CrossRef Google scholar
[105.]
Wei W, Wang F-Q, Fan S-Y, et al. Inactivation and augmentation of the primary 3-ketosteroid-δ1- dehydrogenase in mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene- 3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microb, 2010, 76(13): 4578-4582.
CrossRef Google scholar
[106.]
Yao K, Wang F-Q, Zhang H-C, et al. Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metab Eng, 2013, 15: 75-87.
CrossRef Google scholar
[107.]
Chaudhari PN, Chaudhari BL, Chincholkar SB. Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett, 2010, 32(5): 695-699.
CrossRef Google scholar
[108.]
Sharma P, Slathia PS, Somal P, et al. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. Ann Microbiol, 2012, 62(4): 1651-1659.
CrossRef Google scholar
[109.]
Liu Y, Chen G, Ge F, et al. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol, 2011, 27(4): 759-765.
CrossRef Google scholar
[110.]
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49(W1): W293-W296.
CrossRef Google scholar
[111.]
Bailey TL, Johnson J, Grant CE, et al. The MEME Suite. Nucleic Acids Res, 2015, 43(W1): W39-W49.
CrossRef Google scholar
Funding
national key research and development program of China(2019YFA0905300)

Accesses

Citations

Detail

Sections
Recommended

/