Identification and expression profiling of c-di-GMP signaling genes in the probiotic strain Escherichia coli Nissle 1917 during adhesion to the intestinal epithelial cells

Sathyanarayanan Jayashree, Ramamoorthy Sivakumar, Jeyaprakash Rajendhran, Kumaresan Ganesan, M. Hussain Munavar

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 240-249. DOI: 10.1007/s43393-023-00189-w
Original Article

Identification and expression profiling of c-di-GMP signaling genes in the probiotic strain Escherichia coli Nissle 1917 during adhesion to the intestinal epithelial cells

Author information +
History +

Abstract

Cyclic-di-GMP (c-di-GMP) is a ubiquitous signaling molecule in many microorganisms that orchestrates genetic regulation during the transition between a sessile and motile lifestyle. The intracellular levels of c-di-GMP are stringently monitored by two enzymes, diguanylate cyclases (DGCs) consisting of GGDEF domain and phosphodiesterases (PDEs) with EAL or HD-GYP domain. This study scanned the probiotic strain Escherichia coli Nissle 1917 (EcN) genome for genes encoding for GGDEF and EAL domain-containing proteins. A total of 30 genes coding for proteins with canonical GGDEF, EAL, or both domains were identified. The expression of these genes in EcN during host intestinal cell colonization is yet to be characterized. Herein, the transcript levels of the 30 predicted genes implicated in c-di-GMP metabolism were analyzed in EcN during in vitro colonization of intestinal epithelial cells, Caco-2. The expression of two genes, dgcZ and sfaY, which play a vital role in the initial attachment to the cell surface and stress response, was highly up-regulated in EcN after 2 h of incubation with Caco-2 cells. Further, an affinity pull-down assay identified 53 c-di-GMP binding proteins. The in-depth genetic characterization will provide further insights into the c-di-GMP-mediated regulatory mechanisms during host colonization by the probiotic strains.

Keywords

Cyclic-di-GMP / E. coli Nissle 1917 / Probiotics / Diguanylate cyclase / Phosphodiesterase / Intestine colonization

Cite this article

Download citation ▾
Sathyanarayanan Jayashree, Ramamoorthy Sivakumar, Jeyaprakash Rajendhran, Kumaresan Ganesan, M. Hussain Munavar. Identification and expression profiling of c-di-GMP signaling genes in the probiotic strain Escherichia coli Nissle 1917 during adhesion to the intestinal epithelial cells. Systems Microbiology and Biomanufacturing, 2023, 4(1): 240‒249 https://doi.org/10.1007/s43393-023-00189-w

References

[1]
Albert-Weissenberger C, Sahr T, Sismeiro O, Hacker J, Heuner K, Buchrieser C. Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. J Bacteriol, 2010, 192(2): 446-455,
CrossRef Google scholar
[2]
Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Jenal U. Second messenger-mediated adjustment of bacterial swimming velocity. Cell, 2010, 141(1): 107-116,
CrossRef Google scholar
[3]
Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science, 2010, 327(5967): 866-868,
CrossRef Google scholar
[4]
Ha DG, O'Toole GA. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbial biofilms, 2015 Washington DC, USA ASM Press 301-317,
CrossRef Google scholar
[5]
Chen Y, Chai Y, Guo JH, Losick R. Evidence for cyclic di-GMP-mediated signaling in Bacillus subtilis. J Bacteriol, 2012, 194(18): 5080-5090,
CrossRef Google scholar
[6]
Kariisa AT, Weeks K, Tamayo R. The RNA domain Vc1 regulates downstream gene expression in response to cyclic diguanylate in Vibrio cholerae. PLoS ONE, 2016, 11(2),
CrossRef Google scholar
[7]
Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci, 2016, 113(2): E209-E218,
CrossRef Google scholar
[8]
Aragón IM, Pérez-Mendoza D, Gallegos MT, Ramos C. The c-di-GMP phosphodiesterase BifA is involved in the virulence of bacteria from the Pseudomonas syringae complex. Mol Plant Pathol, 2015, 16(6): 604-615,
CrossRef Google scholar
[9]
Kariisa AT, Grube A, Tamayo R. Two nucleotide second messengers regulate the production of the Vibrio cholerae colonization factor GbpA. BMC Microbiol, 2015, 15: 1-15,
CrossRef Google scholar
[10]
Suppiger A, Eshwar AK, Stephan R, Kaever V, Eberl L, Lehner A. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci Rep, 2016, 6(1): 18753,
CrossRef Google scholar
[11]
Aldridge P, Paul R, Goymer P, Rainey P, Jenal U. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol, 2003, 47(6): 1695-1708,
CrossRef Google scholar
[12]
Christen M, Christen B, Folcher M, Schauerte A, Jenal U. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem, 2005, 280(35): 30829-30837,
CrossRef Google scholar
[13]
Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol, 2005, 187(14): 4774-4781,
CrossRef Google scholar
[14]
Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev, 2004, 18(6): 715-727,
CrossRef Google scholar
[15]
Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Dow JM. Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci, 2006, 103(17): 6712-6717,
CrossRef Google scholar
[16]
Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol, 2005, 187(5): 1792-1798,
CrossRef Google scholar
[17]
Newell PD, Boyd CD, Sondermann H, O'Toole GA. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol, 2011, 9(2),
CrossRef Google scholar
[18]
McKee RW, Kariisa A, Mudrak B, Whitaker C, Tamayo R. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae. BMC Microbiol, 2014, 14(1): 1-13,
CrossRef Google scholar
[19]
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol, 2011, 79(2): 533-551,
CrossRef Google scholar
[20]
Kulesekara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lory S. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci, 2006, 103(8): 2839-2844,
CrossRef Google scholar
[21]
Wei C, Jiang W, Zhao M, Ling J, Zeng X, Deng J, Sun W. A systematic analysis of the role of GGDEF-EAL domain proteins in virulence and motility in Xanthomonas oryzae pv. oryzicola. Sci Rep, 2016, 6(1): 23769,
CrossRef Google scholar
[22]
Bordeleau E, Fortier LC, Malouin F, Burrus V. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet, 2011, 7(3),
CrossRef Google scholar
[23]
Helwig U, Lammers KM, Rizzello F, Brigidi P, Rohleder V, Caramelli E, Campieri M. Lactobacilli, Bifidobacteria and E. coli Nissle induce pro-and anti-inflammatory cytokines in peripheral blood mononuclear cells. World J Gastroenterol: WJG, 2006, 12(37): 5978,
CrossRef Google scholar
[24]
Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, Westendorf AM. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PloS One, 2007, 2(12),
CrossRef Google scholar
[25]
Zyrek AA, Cichon C, Helms S, Enders C, Sonnenborn U, Schmidt MA. Molecular mechanisms underlying the probiotic effects of Escherichia coli Nissle 1917 involve ZO-2 and PKCζ redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol, 2007, 9(3): 804-816,
CrossRef Google scholar
[26]
Kamada N, Maeda K, Inoue N, Hisamatsu T, Okamoto S, Hong KS, Hibi T. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun, 2008, 76(1): 214-220,
CrossRef Google scholar
[27]
Bär F, Von Koschitzky H, Roblick U, Bruch HP, Schulze L, Sonnenborn U, Wedel T. Cell-free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study. Neurogastroenterol Motil, 2009, 21(5): 559-e17,
CrossRef Google scholar
[28]
Bickert T, Trujillo-Vargas CM, Duechs M, Wohlleben G, Polte T, Hansen G, Erb KJ. Probiotic Escherichia coli Nissle 1917 suppresses allergen-induced Th2 responses in the airways. Int Arch Allergy Immunol, 2009, 149(3): 219-230,
CrossRef Google scholar
[29]
Reissbrodt R, Hammes WP, Dal Bello F, Prager R, Fruth A, Hantke K, Williams PH. Inhibition of growth of Shiga toxin-producing Escherichia coli by nonpathogenic Escherichia coli. FEMS Microbiol Lett, 2009, 290(1): 62-69,
CrossRef Google scholar
[30]
Trebichavsky I, Splichal I, Rada V, Splichalova A. Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev, 2010, 68(8): 459-464,
CrossRef Google scholar
[31]
Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med, 2013, 3(3),
CrossRef Google scholar
[32]
Schlee M, Wehkamp J, Altenhoefer A, Oelschlaeger TA, Stange EF, Fellermann K. Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun, 2007, 75: 2399-2407,
CrossRef Google scholar
[33]
Dembinski A, Warzecha Z, Ceranowicz P, Dembinski M, Cieszkowski J, Gosiewski T, Bulanda M, Kusnierz-Cabala B, Galazka K, Konturek PC. Synergic interaction of rifaximin and mutaflor (Escherichia coli Nissle 1917) in the treatment of acetic acid-induced colitis in rats. Gastroenterol Res Pract, 2016, 2016: 3126211-3126280,
CrossRef Google scholar
[34]
Jiang Y, Kong Q, Roland KL, Wolf A, Curtiss R. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4. Pathog Dis, 2014, 70: 390-400,
CrossRef Google scholar
[35]
Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev, 2013, 77(1): 1-52,
CrossRef Google scholar
[36]
Ryan RP, Tolker-Nielsen T, Dow JM. When the PilZ don’t work: effectors for cyclic di-GMP action in bacteria. Trends Microbiol, 2012, 20(5): 235-242,
CrossRef Google scholar
[37]
Sondermann H, Shikuma NJ, Yildiz FH. You’ve come a long way: c-di-GMP signaling. Curr Opin Microbiol, 2012, 15(2): 140-146,
CrossRef Google scholar
[38]
Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 2006, 22: 3-6,
CrossRef Google scholar
[39]
Jayashree S, Sivakumar R, Karthikeyan R, Gunasekaran P, Rajendhran J. Genome-wide identification of probiotic Escherichia coli Nissle 1917 (EcN) fitness genes during adhesion to the intestinal epithelial cells Caco-2. Gene, 2021, 803,
CrossRef Google scholar
[40]
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Brinkman FSL. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 2010, 26(13): 1608-1615
[41]
An SQ, Caly DL, McCarthy Y, Murdoch SL, Ward J, Febrer M, Ryan RP. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathog, 2014, 10(10),
CrossRef Google scholar
[42]
Jayashree S, Karthikeyan R, Nithyalakshmi S, Ranjani J, Gunasekaran P, Rajendhran J. Anti-adhesion property of the potential probiotic strain Lactobacillus fermentum 8711 against methicillin-resistant Staphylococcus aureus (MRSA). Front Microbiol, 2018, 9: 411,
CrossRef Google scholar
[43]
Römling U, Gomelsky M, Galperin MY. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol, 2005, 57(3): 629-639,
CrossRef Google scholar
[44]
Povolotsky TL, Hengge R. Genome-based comparison of cyclic di-GMP signaling in pathogenic and commensal Escherichia coli strains. J Bacteriol, 2016, 198(1): 111-126,
CrossRef Google scholar
[45]
Nie H, Xiao Y, He J, Liu H, Nie L, Chen W, Huang Q. Phenotypic–genotypic analysis of GGDEF/EAL/HD-GYP domain-encoding genes in Pseudomonas putida. Environ Microbiol Rep, 2020, 12(1): 38-48,
CrossRef Google scholar
[46]
Holland LM, O'Donnell ST, Ryjenkov DA, Gomelsky L, Slater SR, Fey PD, O'Gara JP. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol, 2008, 190(15): 5178-5189,
CrossRef Google scholar
[47]
Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol, 2017, 15(5): 271-284,
CrossRef Google scholar
[48]
Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res, 2012, 40(D1): D302-D305,
CrossRef Google scholar
[49]
Zhulin IB, Taylor BL, Dixon R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci, 1997, 22(9): 331-333, PMID: 9301332
CrossRef Google scholar
[50]
Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev, 1999, 63(2): 479-506,
CrossRef Google scholar
[51]
Ho YSJ, Burden LM, Hurley JH. Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J, 2000, 19(20): 5288-5299,
CrossRef Google scholar
[52]
Tschowri N, Busse S, Hengge R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes Dev, 2009, 23(4): 522-534,
CrossRef Google scholar
[53]
Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U. A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteom, 2012, 75(15): 4874-4878,
CrossRef Google scholar
[54]
Düvel J, Bertinetti D, Möller S, Schwede F, Morr M, Wissing J, Häussler S. A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods, 2012, 88(2): 229-236,
CrossRef Google scholar
[55]
Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as ac-di-GMP-responsive transcription factor. Mol Microbiol, 2008, 69(2): 376-389,
CrossRef Google scholar
[56]
Baraquet C, Murakami K, Parsek MR, Harwood CS. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res, 2012, 40(15): 7207-7218,
CrossRef Google scholar
[57]
Chambers JR, Liao J, Schurr MJ, Sauer K. BrlR from Pseudomonas aeruginosa is ac-di-GMP-responsive transcription factor. Mol Microbiol, 2014, 92(3): 471-487,
CrossRef Google scholar
[58]
Srivastava D, Hsieh ML, Khataokar A, Neiditch MB, Waters CM. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol Microbiol, 2013, 90(6): 1262-1276,
CrossRef Google scholar
[59]
Jain R, Sliusarenko O, Kazmierczak BI. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLoS Pathog, 2017, 13(8),
CrossRef Google scholar
[60]
Kazmierczak BI, Lebron MB, Murray TS. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol, 2006, 60(4): 1026-1043,
CrossRef Google scholar
[61]
Laventie BJ, Sangermani M, Estermann F, Manfredi P, Planes R, Hug I, Jenal U. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe, 2019, 25(1): 140-152,
CrossRef Google scholar
[62]
Guzzo CR, Dunger G, Salinas RK, Farah CS. Structure of the PilZ–FimXEAL–c-di-GMP complex responsible for the regulation of bacterial type IV pilus biogenesis. J Mol Biol, 2013, 425(12): 2174-2197,
CrossRef Google scholar
[63]
Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Cheng G. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol, 2012, 13(12): 1155-1161,
CrossRef Google scholar
[64]
Li F, Cao L, Bähre H, Kim SK, Schroeder K, Jonas K, Römling U. Patatin-like phospholipase CapV in Escherichia coli-morphological and physiological effects of one amino acid substitution. Npj Biofilms Microbiomes, 2022, 8(1): 39,
CrossRef Google scholar
[65]
Severin GB, Ramliden MS, Hawver LA, Wang K, Pell ME, Kieninger AK, Ng WL. Direct activation of a phospholipase by cyclic GMP-AMP in El Tor Vibrio cholerae. Proc Natl Acad Sci, 2018, 115(26): E6048-E6055,
CrossRef Google scholar
[66]
Wu DC, Zamorano-Sánchez D, Pagliai FA, Park JH, Floyd KA, Lee CK, Yildiz FH. Reciprocal c-di-GMP signaling: incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genet, 2020, 16(3),
CrossRef Google scholar
[67]
Wang F, He Q, Yin J, Xu S, Hu W, Gu L. BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin. Nat Commun, 2018, 9(1): 2563,
CrossRef Google scholar
[68]
Smith TJ, Font ME, Kelly CM, Sondermann H, O'Toole GA. An N-terminal retention module anchors the giant adhesin LapA of Pseudomonas fluorescens at the cell surface: a novel subfamily of type I secretion systems. J Bacteriol, 2018, 200(8): e00734-e817,
CrossRef Google scholar
[69]
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Sanjuán J. Impact of c-di-GMP on the extracellular proteome of Rhizobium etli. Biology, 2023, 12(1): 44,
CrossRef Google scholar
[70]
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol, 2005, 187(24): 8237-8246,
CrossRef Google scholar
[71]
Sjöström AE, Balsalobre C, Emödy L, Westerlund-Wikström B, Hacker J, Uhlin BE. The SfaXII protein from newborn meningitis E. coli is involved in regulation of motility and type 1 fimbriae expression. Microb Pathog, 2009, 46(5): 243-252,
CrossRef Google scholar
[72]
Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology, 2009, 155(4): 1318-1331,
CrossRef Google scholar
[73]
Reinders A, Hee CS, Ozaki S, Mazur A, Boehm A, Schirmer T, Jenal U. Expression and genetic activation of cyclic di-GMP-specific phosphodiesterases in Escherichia coli. J Bacteriol, 2016, 198(3): 448-462,
CrossRef Google scholar
Funding
Science and Engineering Research Board (IN)(File No. PDF/2019/002852)

Accesses

Citations

Detail

Sections
Recommended

/