Metabolic engineering of Escherichia coli for the efficient production of l-threonine

Hao Yang1, Ying-Jie Hou1, Jian-Zhong Xu1,c, Wei-Guo Zhang1,d

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 810-819. DOI: 10.1007/s43393-023-00183-2
Original Article

Metabolic engineering of Escherichia coli for the efficient production of l-threonine

  • Hao Yang1, Ying-Jie Hou1, Jian-Zhong Xu1,c, Wei-Guo Zhang1,d
Author information +
History +

Abstract

l-Threonine is an important amino acid, which can be added in food, medicine or feed. In this paper, an l-threonine-producing strain was constructed using a modified CRISPR gene editing technology. Here, it was verified that the mutation of glycine at position 433 of aspartate kinase AKI to arginine (thrA G1297A) relieve effectively the feedback inhibition of AKI by l-threonine. The trc promoter replaced the native promoter of thrA in the Escherichia coli XQ-12 genome, and thus increasing its expression level. Moreover, by modifying the glycolytic pathway, disruption of phosphofructokinase encoded by the gene pfkA and pyruvate kinase encoded by the gene pykF increased l-threonine production. Then, the ppc gene encoding phosphoenolpyruvate carboxylase was overexpressed by replacing its native promoter with the core-trc promoter, which slightly improved the growth of the l-threonine-producing strain E. coli XQ-12 as well as the l-threonine production. In addition, it was found that further absence of the gene crr in the PTS system and the gene tdh encoding threonine dehydrogenase improved significantly l-threonine production. The final amounts of l-threonine produced by plasmid-free, antibiotic-free and inducer-free strains E. coli XQ-12.4 were 127.3 g/L and 3.536 g/L/h, respectively, in fed-batch fermentation.

Keywords

l-Threonine / Escherichia coli / Metabolic engineering / Aspartate kinase I

Cite this article

Download citation ▾
Hao Yang, Ying-Jie Hou, Jian-Zhong Xu, Wei-Guo Zhang. Metabolic engineering of Escherichia coli for the efficient production of l-threonine. Systems Microbiology and Biomanufacturing, 2023, 4(2): 810‒819 https://doi.org/10.1007/s43393-023-00183-2

References

1.
Ding ZX, Fang Y, Zhu LF, Wang JL, Wang XY. Deletion of arcA, iclR, and tdcC in Escherichia coli to improve l-threonine production. Biotechnol Appl Bioc, 2019, 66: 794-807,
2.
Dong X, Zhao Y, Zhao J, Wang X. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis. J Ind Microbiol Biotechnol, 2016, 43: 873-885,
3.
Dong XY, Quinn PJ, Wang XY. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of l-threonine. Biotechnol Adv, 2011, 29: 11-23,
4.
Fan Z, Fang L, Wu L, Wang Z, Wang Y, Han C, Liu X. Improved catalytic activity of a novel aspartate kinase by site-directed saturation mutagenesis. Bioprocess Biosyst Eng, 2022, 45: 541-551,
5.
Fang Y, Wang JL, Ma WJ, Yang J, Zhang HL, Zhao L, Chen SS, Zhang SY, Hu XQ, Li Y, Wang XY. Rebalancing microbial carbon distribution for l-threonine maximization using a thermal switch system. Metab Eng, 2020, 61: 33-46,
6.
Huang C, Guo L, Wang J, Wang N, Huo YX. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering. Appl Microbiol Biotechnol, 2020, 104: 7943-7956,
7.
Isogai S, Takagi H. Enhancement of lysine biosynthesis confers high-temperature stress tolerance to Escherichia coli cells (vol 105, pg 6899, 2021). Appl Microbiol Biotechnol, 2021, 105: 7547-7547, pmcid: 8587252
8.
Kachroo AH, Jayaram M, Rowley PA. Metabolic engineering without plasmids. Nat Biotechnol, 2009, 27: 729-731,
9.
Lee KH, Park JH, Kim TY, Kim HU, Lee SY. Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol, 2007, 3: 149, pmcid: 2174629
10.
Li L, Liao Y, Luo Y, Zhang G, Liao X, Zhang W, Zheng S, Han S, Lin Y, Liang S. Improved efficiency of the desulfurization of oil sulfur compounds in Escherichia coli using a combination of desensitization engineering and DszC overexpression. ACS Synth Biol, 2019, 8: 1441-1451,
11.
Li Q, Sun B, Chen J, Zhang Y, Jiang Y, Yang S. A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochim Biophys Sin (Shanghai), 2021, 53: 620-627,
12.
Li Y, Xian H, Xu Y, Zhu Y, Sun Z, Wang Q, Qi Q. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli. Microb Cell Fact, 2021, 20: 32, pmcid: 7852082
13.
Liu JH, Li HL, Xiong H, Xie XX, Chen N, Zhao GR, Caiyin Q, Zhu HJ, Qiao JJ. Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli. Biotechnol Bioeng, 2019, 116: 110-120,
14.
Long CP, Au J, Sandoval NR, Gebreselassie NA, Antoniewicz MR. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli. Nat Commun, 2017, 8, pmcid: 5290146
15.
Lv YY, Wu ZH, Han SY, Lin Y, Zheng SP. Construction of recombinant Corynebacterium glutamicum for l-threonine production. Biotechnol Bioproc E, 2012, 17: 16-21,
16.
Ma YW, Zhang LF, Huang XX. Genome modification by CRISPR/Cas9. FEBS J, 2014, 281: 5186-5193,
17.
Meyer M, Wilson P, Schomburg D. Hydrogen bonding and molecular surface shape complementarity as a basis for protein docking. J Mol Biol, 1996, 264: 199-210,
18.
Paris S, Viemon C, Curien G, Dumas R. Mechanism of control of Arabidopsis thaliana aspartate kinase-homoserine dehydrogenase by threonine. J Biol Chem, 2003, 278: 5361-5366,
19.
Park JH, Lee SY. Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnol J, 2010, 5: 560-577,
20.
Petit C, Kim Y, Lee SK, Brown J, Larsen E, Ronning DR, Suh JW, Kang CM. Reduction of feedback inhibition in homoserine kinase (ThrB) of Corynebacterium glutamicum enhances l-threonine biosynthesis. ACS Omega, 2018, 3: 1178-1186, pmcid: 6045374
21.
Siedler S, Bringer S, Bott M. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol, 2011, 92: 929-937,
22.
Su YW, Guo QQ, Wang S, Zhang X, Wang J. Effects of betaine supplementation on l-threonine fed-batch fermentation by Escherichia coli. Bioproc Biosyst Eng, 2018, 41: 1509-1518,
23.
Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep, 2016, 35: 1535-1544,
24.
Trcek J, Mira NP, Jarboe LR. Adaptation and tolerance of bacteria against acetic acid. Appl Microbiol Biotechnol, 2015, 99: 6215-6229,
25.
Tyo KEJ, Ajikumar PK, Stephanopoulos G. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol, 2009, 27: 760-U115,
26.
Wang J, Cheng LK, Chen N. High-level production of l-threonine by recombinant Escherichia coli with combined feeding strategies. Biotechnol Biotechnol Equip, 2014, 28: 495-501, pmcid: 4433798
27.
Wei L, Wang Q, Xu N, Cheng J, Zhou W, Han G, Jiang H, Liu J, Ma Y. Combining protein and metabolic engineering strategies for high-level production of O-acetylhomoserine in Escherichia coli. ACS Synth Biol, 2019, 8: 1153-1167,
28.
Xie XX, Liang Y, Liu HL, Liu Y, Xu QY, Zhang CL, Chen N. Modification of glycolysis and its effect on the production of threonine in Escherichia coli. J Ind Microbiol Biotechnol, 2014, 41: 1007-1015,
29.
Xu J, Yu H, Chen X, Liu L, Zhang W. Accelerated green process of 2,5-dimethylpyrazine production from glucose by genetically modified Escherichia coli. ACS Synth Biol, 2020, 9: 2576-2587,
30.
Zhao H, Fang Y, Wang XY, Zhao L, Wang JL, Li Y. Increasing l-threonine production in Escherichia coli by engineering the glyoxylate shunt and the l-threonine biosynthesis pathway. Appl Microbiol Biotechnol, 2018, 102: 5505-5518,
31.
Zhu LF, Fang Y, Ding ZX, Zhang SY, Wang XY. Developing an l-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and l-threonine biosynthetic pathway. Biotechnol Appl Biochem, 2019, 66: 962-976,
Funding
the National Key Research and Development Program of China(2021YFC2100900); the National Natural Science Foundation of China(32271534); the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions(111-2-06)

Accesses

Citations

Detail

Sections
Recommended

/