Metabolic engineering for improving ectoine production in Escherichia coli

Ying Li1,3, Shuyan Zhang1,3, Hedan Li1,3, Danyang Huang1,2, Ziwei Liu1,3, Dengke Gong1,3, Yang Wang1,3, Zhen Wang1,3, Xiaoyuan Wang1,2,3,j

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 337-347. DOI: 10.1007/s43393-023-00181-4
Original Article

Metabolic engineering for improving ectoine production in Escherichia coli

  • Ying Li1,3, Shuyan Zhang1,3, Hedan Li1,3, Danyang Huang1,2, Ziwei Liu1,3, Dengke Gong1,3, Yang Wang1,3, Zhen Wang1,3, Xiaoyuan Wang1,2,3,j
Author information +
History +

Abstract

Previously, we have developed an Escherichia coli strain MWZ003/pFT28-ectABC-EclysC*-aspDH-ppc3 in which the titer of ectoine reached 30.37 g/L with a yield of 0.13 g/g glucose after 36 h fed-batch fermentation. In this study, this strain was further modified to improve the production of ectoine. Genes pflB encoding the pyruvate formatelyase, poxB encoding the pyruvate oxidase, adhE encoding the alcohol dehydrogenase, and aroG encoding the 3-deoxy-7-phosphoheptulonate synthase were deleted from MWZ003, resulting in the strain MWL007. Comparing with the control MWZ003/pFT28-ectABC-EclysC*-aspDH-ppc3, ectoine production in MWL007/pFT28-ectABC-EclysC*-aspDH-ppc3 increased 21% with a yield of 0.43 g/g glucose. The gene mscS encoding the small conductance mechanosensitive channel MscS was further deleted in MWL007, resulting in the strain MWL009. Comparing with the control MWZ003/pFT28-ectABC-EclysC*-aspDH-ppc3, ectoine production in MWL009/pFT28-ectABC-EclysC*-aspDH-ppc3 increased 28% with a yield of 0.46 g/g glucose. After the fermentation conditions were optimized, ectoine production in MWL009/pFT28-ectABC-EclysC*-aspDH-ppc3 further increased and the yield reached 0.63 g/g glucose. After 60 h fed-batch fermentation, the titer of ectoine in MWL009/pFT28-ectABC-EclysC*-aspDH-ppc3 reached 34.27 g/L with the yield of 0.34 g/g glucose. These results indicate that ectoine production in MWL009/pFT28-ectABC-EclysC*-aspDH-ppc3 can be improved by accumulation of the key precursors.

Keywords

Escherichia coli / Metabolic engineering / Ectoine production / MscS / Medium optimization

Cite this article

Download citation ▾
Ying Li, Shuyan Zhang, Hedan Li, Danyang Huang, Ziwei Liu, Dengke Gong, Yang Wang, Zhen Wang, Xiaoyuan Wang. Metabolic engineering for improving ectoine production in Escherichia coli. Systems Microbiology and Biomanufacturing, 2023, 4(1): 337‒347 https://doi.org/10.1007/s43393-023-00181-4

References

1.
Zhang LH, Lang YJ, Nagata S. Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 2009, 13(4): 717-724,
2.
Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine, 2013, 20(7): 585-591,
3.
Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. FEBS Lett, 2005, 579(21): 4775-4780,
4.
Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol, 2008, 26(4): 326-333,
5.
Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, Riclea R, Dickschat JS, Heider J, Bremer E. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol, 2016, 18(4): 1227-1248,
6.
Zhang S, Fang Y, Zhu L, Li H, Wang Z, Li Y, Wang X. Metabolic engineering of Escherichia coli for efficient ectoine production. Syst Microbiol Biomanuf, 2021, 1(4): 444-458,
7.
Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol, 2006, 188(11): 3774-3784, pmcid: 1482885
8.
Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng, 1998, 59(1): 128-128,
9.
Schubert T, Maskow T, Benndorf D, Harms H, Breuer U. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol, 2007, 73(10): 3343-3347, pmcid: 1907108
10.
Fallet C, Rohe P, Franco-Lara E. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng, 2010, 107(1): 124-133,
11.
Zhao Q, Li S, Lv P, Sun S, Ma C, Xu P, Su H, Yang C. High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium. Microb Cell Fact, 2019, 18(1): 184, pmcid: 6815383
12.
Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Appl Microbiol Biotechnol, 2018, 102(13): 5505-5518,
13.
Song CW, Lee J, Ko YS, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng, 2015, 30: 121-129,
14.
Zhang Y, Meng Q, Ma H, Liu Y, Cao G, Zhang X, Zheng P, Sun J, Zhang D, Jiang W, Ma Y. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microb Cell Fact, 2015, 14: 86, pmcid: 4465468
15.
Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng, 2016, 36: 10-18,
16.
Becker M, Kramer R. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur Biophys J, 2015, 44(7): 577-588,
17.
Yamashita C, Hashimoto K, Kumagai K, Maeda T, Takada A, Yabe I, Kawasaki H, Wachi M. L-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem, 2013, 77(5): 1008-1013,
18.
Nakamura J, Hirano S, Ito H, Wachi M. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol, 2007, 73(14): 4491-4498, pmcid: 1932805
19.
Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Biores Technol, 2017, 245: 1588-1602,
20.
Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng, 2020, 58: 17-34,
21.
Parwata IP, Wahyuningrum D, Suhandono S, Hertadi R. Heterologous ectoine production in Escherichia coli: optimization using response surface methodology. Int J Microbiol, 2019, 2019: 5475361, pmcid: 6636453
22.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 2015, 81(7): 2506-2514, pmcid: 4357945
23.
Ali SA, Chew YW. FabV/triclosan is an antibiotic-free and cost-effective selection system for efficient maintenance of high and medium-copy number plasmids in Escherichia coli. PLoS One, 2015, 10(6), pmcid: 4461242
24.
Wang S, Fang Y, Wang Z, Zhang S, Wang L, Guo Y, Wang X. Improving L-threonine production in Escherichia coli by elimination of transporters ProP and ProVWX. Microb Cell Fact, 2021, 20(1): 58, pmcid: 7927397
25.
Furdui C, Zhou L, Woodard RW, Anderson KS. Insights into the mechanism of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (Phe) from Escherichia coli using a transient kinetic analysis. J Biol Chem, 2004, 279(44): 45618-45625,
26.
Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J, Feng Z. Pathway construction and metabolic engineering for fermentative production of beta-alanine in Escherichia coli. Appl Microbiol Biotechnol, 2020, 104(6): 2545-2559,
27.
Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Appl Microbiol Biotechnol, 2019, 103(11): 4549-4564,
28.
Wang J, Ma W, Fang Y, Yang J, Zhan J, Chen S, Wang X. Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB. J Ind Microbiol Biotechnol, 2019, 46(11): 1557-1568,
29.
Lin Z, Zhang Y, Yuan Q, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb Cell Fact, 2015, 14: 185, pmcid: 4654888
30.
Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic engineering for overproduction of colanic acid in Escherichia coli mutant with short lipopolysaccharide. J Agric Food Chem, 2022, 70(27): 8351-8364,
31.
Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol, 2010, 76(15): 5067-5078, pmcid: 2916504
32.
Abdelaal AS, Yazdani SS. Engineering E. coli to synthesize butanol. Biochem Soc Trans, 2022, 50(2): 867-876,
33.
Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Kramer R. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta, 2013, 1828(4): 1230-1240,
34.
Kawasaki H, Martinac B. Mechanosensitive channels of Corynebacterium glutamicum functioning as exporters of L-glutamate and other valuable metabolites. Curr Opin Chem Biol, 2020, 59: 77-83,
35.
Liang DH, Hu Y. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion by Achromobacter sp. JL9 using with different carbon and nitrogen sources. Bioresour Technol, 2019, 293: 122061,
36.
Elhadi D, Lv L, Jiang XR, Wu H, Chen GQ. CRISPRi engineering E. coli for morphology diversification. Metab Eng, 2016, 38: 358-369,
37.
Li D, Lv L, Chen JC, Chen GQ. Controlling microbial PHB synthesis via CRISPRi. Appl Microbiol Biotechnol, 2017, 101(14): 5861-5867,
38.
Gu F, Jiang W, Mu Y, Huang H, Su T, Luo Y, Liang Q, Qi Q. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems. ACS Synth Biol, 2020, 9(2): 209-217,
Funding
Key Technologies Research and Development Program(2018YFA0900300)

Accesses

Citations

Detail

Sections
Recommended

/