1. | Zhang LH, Lang YJ, Nagata S. Efficient production of ectoine using ectoine-excreting strain. Extremophiles, 2009, 13(4): 717-724, |
2. | Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT. Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine, 2013, 20(7): 585-591, |
3. | Kanapathipillai M, Lentzen G, Sierks M, Park CB. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid. FEBS Lett, 2005, 579(21): 4775-4780, |
4. | Graf R, Anzali S, Buenger J, Pfluecker F, Driller H. The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol, 2008, 26(4): 326-333, |
5. | Widderich N, Czech L, Elling FJ, Konneke M, Stoveken N, Pittelkow M, Riclea R, Dickschat JS, Heider J, Bremer E. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol, 2016, 18(4): 1227-1248, |
6. | Zhang S, Fang Y, Zhu L, Li H, Wang Z, Li Y, Wang X. Metabolic engineering of Escherichia coli for efficient ectoine production. Syst Microbiol Biomanuf, 2021, 1(4): 444-458, |
7. | Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ, Vargas C. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol, 2006, 188(11): 3774-3784, pmcid: 1482885 |
8. | Sauer T, Galinski EA. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng, 1998, 59(1): 128-128, |
9. | Schubert T, Maskow T, Benndorf D, Harms H, Breuer U. Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol, 2007, 73(10): 3343-3347, pmcid: 1907108 |
10. | Fallet C, Rohe P, Franco-Lara E. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress. Biotechnol Bioeng, 2010, 107(1): 124-133, |
11. | Zhao Q, Li S, Lv P, Sun S, Ma C, Xu P, Su H, Yang C. High ectoine production by an engineered Halomonas hydrothermalis Y2 in a reduced salinity medium. Microb Cell Fact, 2019, 18(1): 184, pmcid: 6815383 |
12. | Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Appl Microbiol Biotechnol, 2018, 102(13): 5505-5518, |
13. | Song CW, Lee J, Ko YS, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng, 2015, 30: 121-129, |
14. | Zhang Y, Meng Q, Ma H, Liu Y, Cao G, Zhang X, Zheng P, Sun J, Zhang D, Jiang W, Ma Y. Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis. Microb Cell Fact, 2015, 14: 86, pmcid: 4465468 |
15. | Ning Y, Wu X, Zhang C, Xu Q, Chen N, Xie X. Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli. Metab Eng, 2016, 36: 10-18, |
16. | Becker M, Kramer R. MscCG from Corynebacterium glutamicum: functional significance of the C-terminal domain. Eur Biophys J, 2015, 44(7): 577-588, |
17. | Yamashita C, Hashimoto K, Kumagai K, Maeda T, Takada A, Yabe I, Kawasaki H, Wachi M. L-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem, 2013, 77(5): 1008-1013, |
18. | Nakamura J, Hirano S, Ito H, Wachi M. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl Environ Microbiol, 2007, 73(14): 4491-4498, pmcid: 1932805 |
19. | Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X. Current status on metabolic engineering for the production of L-aspartate family amino acids and derivatives. Biores Technol, 2017, 245: 1588-1602, |
20. | Wendisch VF. Metabolic engineering advances and prospects for amino acid production. Metab Eng, 2020, 58: 17-34, |
21. | Parwata IP, Wahyuningrum D, Suhandono S, Hertadi R. Heterologous ectoine production in Escherichia coli: optimization using response surface methodology. Int J Microbiol, 2019, 2019: 5475361, pmcid: 6636453 |
22. | Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 2015, 81(7): 2506-2514, pmcid: 4357945 |
23. | Ali SA, Chew YW. FabV/triclosan is an antibiotic-free and cost-effective selection system for efficient maintenance of high and medium-copy number plasmids in Escherichia coli. PLoS One, 2015, 10(6), pmcid: 4461242 |
24. | Wang S, Fang Y, Wang Z, Zhang S, Wang L, Guo Y, Wang X. Improving L-threonine production in Escherichia coli by elimination of transporters ProP and ProVWX. Microb Cell Fact, 2021, 20(1): 58, pmcid: 7927397 |
25. | Furdui C, Zhou L, Woodard RW, Anderson KS. Insights into the mechanism of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (Phe) from Escherichia coli using a transient kinetic analysis. J Biol Chem, 2004, 279(44): 45618-45625, |
26. | Zou X, Guo L, Huang L, Li M, Zhang S, Yang A, Zhang Y, Zhu L, Zhang H, Zhang J, Feng Z. Pathway construction and metabolic engineering for fermentative production of beta-alanine in Escherichia coli. Appl Microbiol Biotechnol, 2020, 104(6): 2545-2559, |
27. | Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Appl Microbiol Biotechnol, 2019, 103(11): 4549-4564, |
28. | Wang J, Ma W, Fang Y, Yang J, Zhan J, Chen S, Wang X. Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB. J Ind Microbiol Biotechnol, 2019, 46(11): 1557-1568, |
29. | Lin Z, Zhang Y, Yuan Q, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb Cell Fact, 2015, 14: 185, pmcid: 4654888 |
30. | Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic engineering for overproduction of colanic acid in Escherichia coli mutant with short lipopolysaccharide. J Agric Food Chem, 2022, 70(27): 8351-8364, |
31. | Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol, 2010, 76(15): 5067-5078, pmcid: 2916504 |
32. | Abdelaal AS, Yazdani SS. Engineering E. coli to synthesize butanol. Biochem Soc Trans, 2022, 50(2): 867-876, |
33. | Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Kramer R. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta, 2013, 1828(4): 1230-1240, |
34. | Kawasaki H, Martinac B. Mechanosensitive channels of Corynebacterium glutamicum functioning as exporters of L-glutamate and other valuable metabolites. Curr Opin Chem Biol, 2020, 59: 77-83, |
35. | Liang DH, Hu Y. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion by Achromobacter sp. JL9 using with different carbon and nitrogen sources. Bioresour Technol, 2019, 293: 122061, |
36. | Elhadi D, Lv L, Jiang XR, Wu H, Chen GQ. CRISPRi engineering E. coli for morphology diversification. Metab Eng, 2016, 38: 358-369, |
37. | Li D, Lv L, Chen JC, Chen GQ. Controlling microbial PHB synthesis via CRISPRi. Appl Microbiol Biotechnol, 2017, 101(14): 5861-5867, |
38. | Gu F, Jiang W, Mu Y, Huang H, Su T, Luo Y, Liang Q, Qi Q. Quorum sensing-based dual-function switch and its application in solving two key metabolic engineering problems. ACS Synth Biol, 2020, 9(2): 209-217, |