Genetic modification of Escherichia coli to improve 1,2,4-butanetriol production from cellulose hydrolysate

Dan She1,2, Shuting Wang1,2, Hong Zong1,2, Xinyao Lu1,2, Bin Zhuge1,2,3,e()

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (2) : 801-809. DOI: 10.1007/s43393-023-00177-0
Original Article

Genetic modification of Escherichia coli to improve 1,2,4-butanetriol production from cellulose hydrolysate

  • Dan She1,2, Shuting Wang1,2, Hong Zong1,2, Xinyao Lu1,2, Bin Zhuge1,2,3,e()
Author information +
History +

Abstract

The presence of various furan aldehydes in cellulose hydrolysate affects the fermentation of 1,2,4-butanetriol (BT) in a similar way. In this study, furfural was used as a representative for the modification of BT-producing E. coli for tolerance. The engineered Escherichia coli harboring the recombinant BT pathway had decreased the biomass by 58% and the BT titer by 52% in the presence of 0.4 g/L furfural. To improve the tolerance of the strain and the efficiency of BT synthesis in the hydrolysate, seven furfural tolerance genes, ucpA, fucO, groESL, lpcA, pncB, nadD, and nadE were introduced into the BT-producing E. coli. All these genes differentially improved the furfural tolerance performance of the cells. Overexpression of these tolerance genes reduces the accumulation of reactive oxygen species and promotes glycolysis. Oxidoreductase UcpA was the best candidate for improving cell growth. UcpA also increased the activities of Xdh and YqhD and the RNA levels of YjhG and KivD, leading to a 32% increase in BT yield per biomass and the best BT titer of 14.4 g/L in the presence of 0.4 g/L furfural. In the shaker and 5 L fermenter, the BT titer reached 5.2 g/L and 11.2 g/L, respectively, by using corn cob cellulose as substrate.

Keywords

Corn cob hydrolysate / Escherichia coli / 1,2,4-Butanetriol / Furfural / Tolerance

Cite this article

Download citation ▾
Dan She, Shuting Wang, Hong Zong, Xinyao Lu, Bin Zhuge. Genetic modification of Escherichia coli to improve 1,2,4-butanetriol production from cellulose hydrolysate. Systems Microbiology and Biomanufacturing, 2023, 4(2): 801‒809 https://doi.org/10.1007/s43393-023-00177-0

References

1.
Lu X, He S, Zong H, Song J, Chen W, Zhuge B. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J Microbiol Biotechnol, 2016, 32: 149,
2.
Jing P, Cao X, Lu X, Zong H, Zhuge B. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng, 2018, 126: 547-552,
3.
Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol, 2008, 1: 497-506, pmcid: 3815291
4.
Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT. Genome-wide mapping of furfural tolerance genes in Escherichia coli. PLoS ONE, 2014, 9: e87540, pmcid: 3905028
5.
Almeida JR, Modig T, Petersson A, H?hn-H?gerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol, 2010, 82: 340-349,
6.
Zhao M, Shi D, Lu X, Zong H, Zhuge B, Ji H. Ethanol fermentation from non-detoxified lignocellulose hydrolysate by a multi-stress tolerant yeast Candida glycerinogenes mutant. Bioresour Technol, 2019, 273: 634-640,
7.
Gutiérrez T, Ingram LO, Preston JF. Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol, 2006, 121: 154-164,
8.
Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, et al.. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels, 2010, 3: 2, pmcid: 2820483
9.
Kerner MJ, Naylor DJ, Ishihama Y, Maier T, Chang H-C, Stines AP, et al.. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell, 2005, 122: 209-220,
10.
Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng, 2013, 15: 196-205,
11.
Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, et al.. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc Natl Acad Sci USA, 2013, 110: 4021-4026, pmcid: 3593909
12.
Fralick JA, Burns-Keliher LL. Additive effect of tolC and rfa mutations on the hydrophobic barrier of the outer membrane of Escherichia coli K-12. J Bacteriol, 1994, 176: 6404-6406, pmcid: 196984
13.
Schnaitman CA, Klena JD. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev, 1993, 57: 655-682, pmcid: 372930
14.
Song H-S, Jeon J-M, Kim H-J, Bhatia SK, Sathiyanarayanan G, Kim J, et al.. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour Technol, 2017, 245: 1430-1435,
15.
Akinterinwa O, Khankal R, Cirino PC. Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol, 2008, 19: 461-467,
16.
Candido JP, Claro EMT, de Paula CBC, Shimizu FL, de OliveriaLeite DAN, Brienzo M, et al.. Detoxification of sugarcane bagasse hydrolysate with different adsorbents to improve the fermentative process. World J Microbiol Biotechnol, 2020, 36: 43,
17.
Purwadi R, Niklasson C, Taherzadeh MJ. Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2. J Biotechnol, 2004, 114: 187-198,
18.
Surbhi G, Prashant M. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol, 2018, 102: 1955-1967,
19.
Liu H, Valdehuesa KNG, Nisola GM, Ramos KRM, Chung W-J. High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol, 2012, 115: 244-248,
20.
Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, et al.. Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol, 2014, 80: 5955-5964, pmcid: 4178697
21.
Wang X, Miller EN, Yomano LP, Shanmugam KT, Ingram LO. Increased furan tolerance in Escherichia coli due to a cryptic ucpA gene. Appl Environ Microbiol, 2012, 78: 2452-2455, pmcid: 3302629
22.
Zheng H, Wang X, Yomano LP, Geddes RD, Shanmugam KT, Ingram LO. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microbiol, 2013, 79: 3202-3208, pmcid: 3685246
23.
Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol, 2003, 69: 4951-4965, pmcid: 169105
24.
Desmond C, Fitzgerald GF, Stanton C, Ross RP. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol, 2004, 70: 5929-5936, pmcid: 522070
25.
Loui C, Chang AC, Lu S. Role of the ArcAB two-component system in the resistance of Escherichia coli to reactive oxygen stress. BMC Microbiol, 2009, 9: 183-180, pmcid: 2748088
26.
Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, et al.. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. Bioresour Technol, 2018, 250: 406-412,
27.
Gao Q, Wang X, Hu S, Xu N, Jiang M, Ma C, et al.. High-yield production of D-1,2,4-butanetriol from lignocellulose-derived xylose by using a synthetic enzyme cascade in a cell-free system. J Biotechnol, 2019, 292: 76-83,

Accesses

Citations

Detail

Sections
Recommended

/