1. | Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S, Sadoshima J. Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion. PLoS ONE, 2014, 9(6): e98972, pmcid: 4048236 |
2. | Belenky P, Bogan K, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci, 2007, 32(1): 12-19, |
3. | Yoshino J, Mills K, Yoon M, Imai S. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab, 2011, 14(4): 528-536, pmcid: 3204926 |
4. | Caton P, Kieswich J, Yaqoob M, Holness M, Sugden M. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia, 2011, 54(12): 3083-3092, |
5. | Ramanathan C, Lackie T, Williams D, Simone P, Zhang Y, Bloomer R. Oral administration of nicotinamide mononucleotide increases nicotinamide adenine dinucleotide level in an animal brain. Nutrients, 2022, pmcid: 8778478 |
6. | Maharjan A, Singhvi M, Kim BS. Biosynthesis of a therapeutically important nicotinamide mononucleotide through a phosphoribosyl pyrophosphate synthetase 1 and 2 engineered strain of Escherichia coli. ACS Synth Biol, 2021, 10(11): 3055-3065, |
7. | Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem, 2004, 279(49): 50754-50763, |
8. | Houtkooper R, Canto C, Wanders R, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev, 2010, 31(2): 194-223, |
9. | Black WB, Aspacio D, Bever D, King E, Zhang L, Li H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microb Cell Fact, 2020, 19(1): 150, pmcid: 7384224 |
10. | Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoes M. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiol Mol Biol Rev, 2017, |
11. | Kadziola A, Jepsen C, Johansson E, McGuire J, Larsen S, Hove-Jensen B. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschII. J Mol Biol, 2005, 354(4): 815-828, |
12. | Hove-Jensen B, Harlow KW, King CJ, Switzer LR. Phosphoribosylpyrophosphate synthetase of Escherichia coli. Properties of the purified enzyme and primary structure of the prs gene. J Biol Chem, 1986, |
13. | Becker M, Smith P, Taylor W, Mustafi R, Switzer R. The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest, 1995, 96(5): 2133-2141, pmcid: 185862 |
14. | Zakataeva NP, Romanenkov DV, Skripnikova VS, Vitushkina MV, Livshits VA, Kivero AD, Novikova AE. Wild-type and feedback-resistant phosphoribosyl pyrophosphate synthetases from Bacillus amyloliquefaciens: purification, characterization, and application to increase purine nucleoside production. Appl Microbiol Biotechnol, 2012, 93(5): 2023-2033, |
15. | Marinescu GC, Popescu RG, Stoian G, Dinischiotu A. beta-nicotinamide mononucleotide (NMN) production in Escherichia coli. Sci Rep, 2018, 8(1): 12278, pmcid: 6095924 |
16. | Shoji S, Yamaji T, Makino H, IshII J, Kondo A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metab Eng, 2021, 65: 167-177, |
17. | Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 2015, 81(7): 2506-2514, pmcid: 4357945 |
18. | Zhang RY, Qin Y, Lv XQ, Wang P, Xu TY, Zhang L, Miao CY. A fluorometric assay for high-throughput screening targeting nicotinamide phosphoribosyltransferase. Anal Biochem, 2011, 412(1): 18-25, |
19. | Dong W, Sun C, Zhu G, Hu S, Xiang L, Shao J. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide. BMC Microbiol, 2014, 14: 29, pmcid: 3923242 |
20. | Huang Z, Li N, Yu S, Zhang W, Zhang T, Zhou J. Systematic engineering of Escherichia coli for efficient production of nicotinamide mononucleotide from nicotinamide. ACS Synth Biol, 2022, pmcid: 9680020 |
21. | Willemoes M, Hove-Jensen B, Larsen S. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase. J Biol Chem, 2000, 275(45): 35408-35412, |
22. | Borujeni A, Channarasappa A, Salis H. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res, 2014, 42(4): 2646-2659, |
23. | Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF. Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol, 2015, 4(5): 595-603, |
24. | Gupta J, Srivastava S. The effect of promoter and RBS combination on the growth and glycogen productivity of sodium-dependent bicarbonate transporter (SbtA) overexpressing Synechococcus sp. PCC 7002 Cells. Front Microbiol, 2021, 12: 607411, pmcid: 8076525 |
25. | Nowroozi FF, Baidoo EE, Ermakov S, Redding-Johanson AM, Batth TS, Petzold CJ, Keasling JD. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Microbiol Biotechnol, 2014, 98(4): 1567-1581, |
26. | Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum——over expression and modification of G6P dehydrogenase. J Biotechnol, 2007, 132(2): 99-109, |
27. | Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett, 2005, 242(2): 265-274, |
28. | Sprenger GA. Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol, 1995, 164(5): 324-330, |
29. | Goormans AR, Snoeck N, Decadt H, Vermeulen K, Peters G, Coussement P, Van Herpe D, Beauprez JJ, De Maeseneire SL, Soetaert WK. Comprehensive study on Escherichia coli genomic expression: does position really matter. Metab Eng, 2020, 62: 10-19, |
30. | Wang Z, Chen T, Ma X, Shen Z, Zhao X. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum. Bioresour Technol, 2011, 102(4): 3934-3940, |
31. | Gazzaniga F, Stebbins R, Chang S, McPeek M, Brenner C. Microbial NAD metabolism: lessons from comparative genomics. Microbiol Mol Biol Rev, 2009, 73(3): 529-541, pmcid: 2738131 |
32. | Black W, Zhang L, Mak W, Maxel S, Cui Y, King E, Fong B, Martinez A, Siegel JB, Li H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat Chem Biol, 2020, 16(1): 87-94, |
33. | Liu Y, Yasawong M, Yu B. Metabolic engineering of Escherichia coli for biosynthesis of beta-nicotinamide mononucleotide from nicotinamide. Microb Biotechnol, 2021, 14(6): 2581-2591, pmcid: 8601175 |
34. | Lucks JB, Qi L, Mutalik VK, Wang D, Arkin AP. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proc Natl Acad Sci U S A, 2011, 108(21): 8617-8622, pmcid: 3102349 |
35. | Xu D, Tan Y, Li Y, Wang X. Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World J Microbiol Biotechnol, 2010, 27(4): 961-968, |
36. | Wang B, Eckert C, Maness P, Yu J. A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol, 2018, 7(1): 276-286, |