Deleting chaperone-usher fimbriae operons to improve L-threonine production in Escherichia coli

Dengke Gong, Jun Qiao, Hedan Li, Ying Li, Danyang Huang, Zhen Wang, Xiaoqing Hu, Xiaoyuan Wang

Systems Microbiology and Biomanufacturing ›› 2023, Vol. 4 ›› Issue (1) : 175-187. DOI: 10.1007/s43393-023-00166-3
Original Article

Deleting chaperone-usher fimbriae operons to improve L-threonine production in Escherichia coli

Author information +
History +

Abstract

Escherichia coli contains 12 chaperone-usher operons, including 64 genes, used for biosynthesis and assembly of various fimbriae which consume a lot of energy and material. In this study, each of the 12 operons was deleted in an L-threonine-producing E. coli strain TWF001, and the resulting 12 deletion mutants produced more L-threonine than TWF001 after 16 or 24 h cultivation. Therefore, the 12 chaperone-usher operons were deleted in different combinations, resulting in 11 strain mutants which lack at least 2 operons. The cell growth and L-threonine production of these 11 mutants were determined. Among these 11 mutants, TWK021 in which 10 chaperone-usher operons were deleted, showed the highest L-threonine production. TWK021 produced 15.75 g L-threonine from 40 g glucose after 36 h cultivation. The conversion rate of glucose to L-threonine reached 0.394 g/g in TWK021, which is 32.2% higher than the control strain TWF001. These results suggest that the fimbria lacking E. coli TWK021 is a good host for efficient production of L-threonine.

Keywords

Escherichia coli / Fimbriae / Chaperone-usher operon / L-Threonine production

Cite this article

Download citation ▾
Dengke Gong, Jun Qiao, Hedan Li, Ying Li, Danyang Huang, Zhen Wang, Xiaoqing Hu, Xiaoyuan Wang. Deleting chaperone-usher fimbriae operons to improve L-threonine production in Escherichia coli. Systems Microbiology and Biomanufacturing, 2023, 4(1): 175‒187 https://doi.org/10.1007/s43393-023-00166-3

References

[1]
Dong X, Quinn PJ, Wang X. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine. Biotechnol Adv, 2011, 29: 11-23,
CrossRef Google scholar
[2]
Mueller U, Huebner S. Economic aspects of amino acids production. Adv Biochem, 2003, 79: 137-170
[3]
Tonouchi N, Ito H. Present global situation of amino acids in industry. Adv Biochem Eng Biotechnol, 2017, 159: 3-14
[4]
Zhu L, Fang Y, Ding Z, Zhang S, Wang X. Developing an L-threonine-producing strain from wild-type Escherichia coli by modifying the glucose uptake, glyoxylate shunt, and L-threonine biosynthetic pathway. Biotechnol Appl Biochem, 2019, 66: 962-976,
CrossRef Google scholar
[5]
Ding Z, Fang Y, Zhu L, Wang J, Wang X. Deletion of arcA, iclR, and tdcC in Escherichia coli to improve l-threonine production. Biotechnol Appl Biochem, 2019, 66: 794-807,
CrossRef Google scholar
[6]
Wang W, Zeng X, Mao X, Wu G, Qiao S. Optimal dietary true ileal digestible threonine for supporting the mucosal barrier in small intestine of weanling pigs. J Nutr, 2010, 140: 981-986,
CrossRef Google scholar
[7]
Tang Q, Tan P, Ma N, Ma X. Physiological functions of threonine in animals: beyond nutrition metabolism. Nutrients, 2021, 13: 2592,
CrossRef Google scholar
[8]
Martinez-Garcia E, Nikel PI, Chavarria M, de Lorenzo V. The metabolic cost of flagellar motion in Pseudomonas putida KT2440. Environ Microbiol, 2014, 16: 291-303,
CrossRef Google scholar
[9]
Jones JA, Toparlak ÖD, Koffas MAG. Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol, 2015, 33: 52-59,
CrossRef Google scholar
[10]
Zhao L, Zhang H, Wang X, Han G, Ma W, Hu X, Li Y. Transcriptomic analysis of an l-threonine-producing Escherichia coli TWF001. Biotechnol Appl Biochem, 2020, 67: 414-429
[11]
Zhao H, Fang Y, Wang X, Zhao L, Wang J, Li Y. Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway. Appl Microbiol Biotechnol, 2018, 102: 5505-5518,
CrossRef Google scholar
[12]
Wang J, Ma W, Fang Y, Yang J, Zhan J, Chen S, Wang X. Increasing L-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB. J Ind Microbiol Biotechnol, 2019, 46: 1557-1568,
CrossRef Google scholar
[13]
Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Appl Microbiol Biotechnol, 2019, 103: 4549-4564,
CrossRef Google scholar
[14]
Zhao L, Lu Y, Yang J, Fang Y, Zhu L, Ding Z, Wang C, Ma W, Hu X, Wang X. Expression regulation of multiple key genes to improve L-threonine in Escherichia coli. Microb Cell Fact, 2020, 19: 46,
CrossRef Google scholar
[15]
Fang Y, Wang J, Ma W, Yang J, Zhang H, Zhao L, Chen S, Zhang S, Hu X, Li Y, Wang X. Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system. Metab Eng, 2020, 61: 33-46,
CrossRef Google scholar
[16]
Yeo H-J. How and why chaperone-usher pilus rods stretch. Structure, 2017, 25: 1783-1784,
CrossRef Google scholar
[17]
Wurpel DJ, Beatson SA, Totsika M, Petty NK, Schembri MA. Chaperone-usher fimbriae of Escherichia coli. PLoS ONE, 2013, 8,
CrossRef Google scholar
[18]
Wei Y, Wang X, Liu J, Nememan I, Singh AH, Weiss H, Levin BR. The population dynamics of bacteria in physically structured habitats and the adaptive virtue of random motility. Proc Natl Acad Sci U S A, 2011, 108: 4047-4052,
CrossRef Google scholar
[19]
Kirov SM. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol Lett, 2003, 224: 151-159,
CrossRef Google scholar
[20]
Epler Barbercheck CR, Bullitt E, Andersson M. Bacterial adhesion pili. Subcell Biochem, 2018, 87: 1-18,
CrossRef Google scholar
[21]
Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol, 1993, 75: 499-511,
CrossRef Google scholar
[22]
Sung BH, Lee CH, Yu BJ, Lee JH, Lee JY, Kim MS, Blattner FR, Kim SC. Development of a biofilm production-deficient Escherichia coli strain as a host for biotechnological applications. Appl Environ Microbiol, 2006, 72: 3336-3342,
CrossRef Google scholar
[23]
Coetser SE, Cloete TE. Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol, 2005, 31: 213-232,
CrossRef Google scholar
[24]
Van Houdt R, Michiels CW. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol, 2005, 156: 626-633,
CrossRef Google scholar
[25]
Skotnicka D, Petters T, Heering J, Hoppert M, Kaever V, Søgaard-Andersen L. Cyclic di-GMP regulates type IV pilus-dependent motility in Myxococcus xanthus. J Bacteriol, 2015, 198: 77-90,
CrossRef Google scholar
[26]
Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol, 2012, 66: 493-520,
CrossRef Google scholar
[27]
Qiao J, Tan X, Ren H, Wu Z, Hu X, Wang X. Construction of an Escherichia coli strain lacking fimbriae by deleting 64 genes and its application for efficient production of poly-3-hydroxybutyrate and L-threonine. Appl Environ Microbiol, 2021, 87: e00381-e421,
CrossRef Google scholar
[28]
Busch A, Waksman G. Chaperone-usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc Lond B Biol Sci, 2012, 367: 1112-1122,
CrossRef Google scholar
[29]
Waksman G, Hultgren SJ. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol, 2009, 7: 765-774,
CrossRef Google scholar
[30]
Lukaszczyk M, Pradhan B, Remaut H. The biosynthesis and structures of bacterial pili. Subcell Biochem, 2019, 92: 369-413,
CrossRef Google scholar
[31]
Zavialov AV, Tischenko VM, Fooks LJ, Brandsdal BO, Aqvist J, Zav'yalov VP, Macintyre S, Knight SD. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J, 2005, 389: 685-694,
CrossRef Google scholar
[32]
Nuccio SP, Baumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes greek. Microbiol Mol Biol Rev, 2007, 71: 551-575,
CrossRef Google scholar
[33]
Korea CG, Badouraly R, Prevost MC, Ghigo JM, Beloin C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol, 2010, 12: 1957-1977,
CrossRef Google scholar
[34]
Wang J, Ma W, Wang Y, Lin L, Wang T, Wang Y, Li Y, Wang X. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl Microbiol Biotechnol, 2018, 102: 10523-10539,
CrossRef Google scholar
[35]
Qiao J, Tan X, Huang D, Li H, Wang Z, Ren H, Hu X, Wang X. Construction and application of an Escherichia coli strain lacking 62 genes responsible for the biosynthesis of enterobacterial common antigen and flagella. J Agric Food Chem, 2021, 69: 4153-4163,
CrossRef Google scholar
[36]
Jiang Y, Chen B, Duan CL, Sun BB, Yang JJ, Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol, 2015, 81: 2506-2514,
CrossRef Google scholar
[37]
Williams BO, Warman ML. CRISPR/CAS9 technologies. J Bone Miner Res, 2017, 32: 883-888,
CrossRef Google scholar
[38]
Wang S, Fang Y, Wang Z, Zhang S, Wang L, Guo Y, Wang X. Improving L-threonine production in Escherichia coli by elimination of transporters ProP and ProVWX. Microb Cell Fact, 2021, 20: 58,
CrossRef Google scholar
[39]
Mu XQ, Bullitt E. Structure and assembly of P-pili: A protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A, 2006, 103: 9861-9866,
CrossRef Google scholar
[40]
Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV, Dalia AB. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol, 2018, 3: 773-780,
CrossRef Google scholar
[41]
Li Y, Hao G, Galvani CD, Meng Y, Fuente L, Hoch HC, Burr TJ. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology (Reading), 2007, 153: 719-726,
CrossRef Google scholar
[42]
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta, 2014, 1840: 2783-2793,
CrossRef Google scholar
[43]
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut, 2018, 67: 574-587,
CrossRef Google scholar
[44]
Li H, Xu D, Tan X, Huang D, Huang Y, Zhao G, Hu X, Wang X. The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res, 2023, 267,
CrossRef Google scholar
[45]
Sasaki Y, Eng T, Herbert RA, Trinh J, Chen Y, Rodriguez A, Gladden J, Simmons BA, Petzold CJ, Mukhopadhyay A. Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnol Biofuels, 2019, 12: 41,
CrossRef Google scholar
[46]
Lowry OH, Carter J, Ward JB, Glaser L. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J Biol Chem, 1971, 246: 6511-6521,
CrossRef Google scholar
[47]
Chen N, Huang J, Feng ZB, Yu L, Xu QY, Wen TY. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl Biochem Biotechnol, 2009, 158: 595-604,
CrossRef Google scholar
Funding
National Key Research and Development Program of China(2021YFC2100900)

Accesses

Citations

Detail

Sections
Recommended

/