1. | Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel, 2006, 19(12): 555-562, |
2. | Zhou J, Li ZK, Zhang H, Wu JL, Ye XF, Dong WL, et al.. Novel maltogenic amylase CoMA from Corallococcus sp. strain EGB catalyzes the conversion of maltooligosaccharides and soluble starch to maltose. Appl Environ Microbiol, 2018, 84(14): e00152-e218, pmcid: 6029087 |
3. | Kuchtova A, Janecek S. Domain evolution in enzymes of the neopullulanase subfamily. Microbiology, 2016, 162(12): 2099-2115, |
4. | Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, et al.. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microb, 1999, 65(4): 1644-1651, |
5. | Nawawi NN, Hashim Z, Manas NHA, Azelee NIW, Illias RM. A porous-cross linked enzyme aggregates of maltogenic amylase from Bacillus lehensis G1: robust biocatalyst with improved stability and substrate diffusion. Int J Biol Macromol, 2020, 148: 1222-1231, |
6. | Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. BBA, 2000, 1478(2): 165-185, |
7. | Zheng Y, Zhang HX, Li RM, Zhu XL, Zhu MW. Effects of maltogenic α-amylase treatment on the proportion of slowly digestible starch and the structural properties of pea starch. Food Biosci, 2022, 48: 101810, |
8. | Ruan YQ, Xu Y, Zhang WC, Zhang RZ. A new maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life. Food Chem, 2021, 344: 128599, |
9. | Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, et al.. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol Lett, 2005, 252(1): 175-181, |
10. | Zhang ZW, Lv JL, Pan L, Zhang YG. Roles and applications of probiotic Lactobacillus strains. Appl Microbiol Biotechnol, 2018, 102(19): 8135-8143, |
11. | Sousa MA, Rama GR, Souza CFV, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol Prog, 2020, 36(2): e2937, |
12. | Yang D, Yu XM, Wu YP, Chen XX, Wei H, Shah NP, et al.. Enhancing flora balance in the gastrointestinal tract of mice by lactic acid bacteria from Chinese sourdough and enzyme activities indicative of metabolism of protein, fat, and carbohydrate by the flora. J Dairy Sci, 2016, 99(10): 7809-7820, |
13. | Xing XL, Suo B, Yang Y, Li Z, Nie WJ, Ai ZL. Application of Lactobacillus as adjunct cultures in wheat dough fermentation. J Food Sci, 2019, 84(4): 842-847, |
14. | Woo SH, Shin YJ, Jeong HM, Kim JS, Ko DS, Hong JS, et al.. Effects of maltogenic amylase from Lactobacillus plantarum on retrogradation of bread. J Cereal Sci, 2020, |
15. | Fadda C, Sanguinetti AM, Caro AD, Collar C, Piga A. Bread staling: updating the view. Compr Rev Food Sci Saf, 2014, 13(4): 473-492, |
16. | Kharazi SH, Kasaai MR, Milani JM, Khajeh K. Antistaling properties of encapsulated maltogenic amylase in gluten-free bread. Food Sci Nutr, 2020, 8(11): 5888-5897, |
17. | Eom HJ, Moon JS, Seo EY, Han NS. Heterologous expression and secretion of Lactobacillus amylovorus α-amylase in Leuconostoc citreum. Biotechnol Lett, 2009, 31(11): 1783-1788, |
18. | Sanoja RR, Guyot JM, Jore J, Pintado J, Juge N, Guyot JP. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus α-Amylase and role of the C-terminal direct repeats in raw-starch binding. Appl Environ Microbiol, 2000, 66(8): 3350-3356, |
19. | Vera A, Rigobello V, Demarigny Y. Comparative study of culture media used for sourdough lactobacilli. Food Microbiol, 2009, 26(7): 728-733, |
20. | Chandok H, Shah P, Akare UR, Hindala M, Bhadoriya SS, Ravi GV, et al.. Screening, isolation and identification of probiotic producing Lactobacillus acidophilus strains EMBS081 & EMBS082 by 16S rRNA gene sequencing. Interdiscip Sci Comput Life Sci, 2015, 7(3): 242-248, |
21. | Hou QC, Bai XY, Li WC, Gao X, Zhang FM, Sun ZH, et al.. Design of primers for evaluation of lactic acid bacteria populations in complex biological samples. Front Microbiol, 2018, 9: 2045, pmcid: 6127287 |
22. | Zhou CY, Bai JY, Deng SS, Wang J, Zhu J, Wu MC, et al.. Cloning of a xylanase gene from Aspergillus usamii and its expression in Escherichia coli. Bioresour Technol, 2018, 99(4): 831-838, |
23. | Wu XQ, Koiwa H. One-step casting of Laemmli discontinued sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel. Anal Biochem, 2012, 421(1): 347-349, |
24. | Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Anal Chem, 1959, 31: 426-428, |
25. | Pareyt B, Finnie SM, Putseys JA, Delcour JA. Lipids in bread making: Sources, interactions, and impact on bread quality. J Cereal Sci, 2011, 54(3): 266-279, |
26. | Quinton LA, Kennedy JF. Approved methods of the American association of cereal chemists. American Association of Cereal Chemists, Approved Methods Committee (2000). |
27. | Mabrouk SB, Messaoud EB, Ayadi D, Jemli S, Roy A, Mezghani M, et al.. Cloning and sequencing of an original gene encoding a maltogenic amylase from Bacillus sp. US149 strain and characterization of the recombinant activity. Mol Biotechnol, 2008, 38(3): 211-219, |
28. | Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, et al.. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim Biophys Acta, 2007, 1774(5): 661-669, |
29. | Liu B, Wang YQ, Zhang XB. Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb Technol, 2006, 39(4): 805-810, |
30. | Sulong MR, Leow TC, Rahman RN, Basri M, Salleh AB. Characteristics of recombinant maltogenic amylase from Geobacillus sp. SK70. Indian J Biotechnol, 2017, 16(1): 91-99 |
31. | Sahlstr?m S, Brathen E. Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chem, 1997, 58(1): 75-80, |
32. | Goesaert H, Leman P, Bijttebier A, Delcour JA. Antifirming effects of starch degrading enzymes in bread crumb. Food Chem, 2009, 57(6): 2346-2355, |
33. | Ding SY, Yang J. The effects of sugar alcohols on rheological properties, functionalities, and texture in baked products—a review. Trends Food Sci Technol, 2021, 111: 670-679, |
34. | Vandeputte GE, Vermeylen R, Geeroms J, Delcour JA. Rice starches. III. structural aspects provide insight in amylopectin retrogradation properties and gel texture. J Cereal Sci, 2003, 38(1): 61-68, |