1. | Donova MV. Barredo J-L, Herráiz I. Steroid bioconversions. Microbial steroids, 2017 New York Springer 1-13 |
2. | Fernández-Cabezón L, Galán B, García JL. New insights on steroid biotechnology. Front Microbiol, 2018, 9: 958-973, pmcid: 5962712 |
3. | Teixeira MP, Passos EF, Haddad NF, et al.. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Environ Toxicol, 2021, 36(7): 1338-1348, |
4. | Liu Z, Liu T, Li W, et al.. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep, 2021, 48(3): 2639-2652, |
5. | Frye CA. Steroids, reproductive endocrine function, and affect. A review. Minerva Ginecol, 2009, 61(6): 541-562, |
6. | Tong WY, Dong X. Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol, 2009, 3(2): 141-153, |
7. | Lednicer D. . Steroid chemistry at a glance, 2011 Chichester John Wiley & Sons |
8. | Javid M, Nickavar B, Vahidi H, et al.. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196. Steroids, 2018, 140: 52-57, |
9. | Herráiz I. Chemical pathways of corticosteroids, industrial synthesis from sapogenins. Methods Mol Biol, 2017, 1645: 15-27, |
10. | Capyk JK, Kalscheuer R, Stewart GR, et al.. Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27 Steroids. J Biol Chem, 2009, 284(51): 35534-35542, pmcid: 2790983 |
11. | Karpova NV, Andryushina VA, Stytsenko TS, et al.. A search for microscopic fungi with directed hydroxylase activity for the synthesis of steroid drugs. Appl Biochem Microbiol, 2016, 52(3): 316-323, |
12. | Vidal M, Becerra J, Mondaca M, et al.. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Appl Microbiol Biotechnol, 2001, 57(3): 385-389, |
13. | Sukhodolskaya GV, Nikolayeva VM, Khomutov SM, et al.. Steroid-1-dehydrogenase of Mycobacterium sp. VKM Ac-1817D strain producing 9alpha-hydroxy-androst-4-ene-3,17-dione from sitosterol. Appl Microbiol Biotechnol, 2007, 74(4): 867-873, |
14. | Galan B, Uhía I, García-Fernández E, et al.. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol, 2017, 10(1): 138-150, |
15. | Yao K, Xu LQ, Wang FQ, et al.. Characterization and engineering of 3-ketosteroid-△ 1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols. Metab Eng, 2014, 24: 181-191, |
16. | Shao M, Zhang X, Rao Z, et al.. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. J Ind Microbiol Biotechnol, 2019, 46(5): 635-647, |
17. | Szentirmai A. Microbial physiology of sidechain degradation of sterols. J Ind Microbiol Biotechnol, 1990, 6(2): 101-115, |
18. | Shtratnikova VY, Schelkunov MI, Dovbnya DV, et al.. Complete genome sequence of Mycobacterium sp. strain VKM Ac-1817D, capable of producing 9α-Hydroxy-androst-4-ene-3,17-dione from phytosterol. Genome Announcements, 2015, 3(1): e01447-14, pmcid: 4319502 |
19. | Luthra U, Bhosle V, Singh NK, et al. Media Optimization for 9α-hydroxyandrost-4-ene-3,17-dione Production by Mycobacterium spp. using Stat Des. 2016. |
20. | Zhou L, Li H, Xu Y, et al.. Effects of a nonionic surfactant TX-40 on 9α-hydroxyandrost-4-ene-3,17-dione biosynthesis and physiological properties of Mycobacterium sp. LY-1. Process Biochem, 2019, 87: 89-94, |
21. | Sun H, Yang J, He K, et al.. Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci, 2021, 230(47), |
22. | Chang H, Zhang H, Zhu L, et al.. A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3,17-dione production with an engineered Mycobacterium neoaurum - ScienceDirect. Biochem Eng J, 2020, 164, |
23. | Gao XQ, Feng JX, Wang XD, et al.. Enhanced steroid metabolites production by resting cell phytosterol bioconversion. Chem Biochem Eng Quart, 2015, 29(4): 567-573, |
24. | Gao X, Feng J, Hua Q, et al.. Investigation of factors affecting biotransformation of phytosterols to 9-hydroxyandrost-4-ene-3,-17-dione based on the HP-β-CD-resting cells reaction system. Biocatal Biotransform, 2014, 32(5–6): 343-347, |
25. | Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. Biores Technol, 2008, 99(15): 6725-6737, |
26. | O'Toole RF, Gautam SS. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci. Genomics, 2017, 109(5–6): 471-474, |
27. | Zhou X, Zhang Y, Shen Y, et al.. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresource Technol, 2020, 309: 123307, |
28. | Liu HH, Xu LQ, Yao K, et al.. Engineered 3-ketosteroid 9α-hydroxylases in Mycobacterium neoaurum: an efficient platform for production of steroid drugs. Appl Environ Microbiol, 2018, 84(14): e02777-e2817, pmcid: 6029100 |
29. | Ceen EG, Herrmann JPR, Dunnill P. Solvent damage during immobilised cell catalysis and its avoidance: studies of 11α-hydroxylation of progesterone by Aspergillus ochraceus. Enzyme Microbial Technol, 1987, 25(6): 491-494, |
30. | Phase N, Patil S. Natural oils are better than organic solvents for the conversion of soybean sterols to 17-ketosteroids by Mycobacterium fortuitum. World J Microbiol Biotechnol, 1994, 10(2): 228-229, |
31. | Van der Geize R, Yam K, Heuser T, et al.. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci, 2007, 104(6): 1947-1952, pmcid: 1794314 |
32. | Yin Y. Effects of different carbon sources on growth, membrane permeability, β-sitosterol consumption, androstadienedione and androstenedione production by Mycobacterium neoaurum. Interdisc Sci Comput Life Sci., 2016, 8(1): 102-107, |