Whole-genome analyses and metabolic modification of Mycobacterium sp. LY-1 to enhance yield of 9α-OH-AD

W. Liu1, H. Li2,b, J. X. Zhang2, Y. N. Xu2, X. M. Zhang2, J. S. Shi2, M. A. G. Koffas3,g, Z. H. Xu1,4,5

Systems Microbiology and Biomanufacturing ›› 2022, Vol. 4 ›› Issue (1) : 127-137. DOI: 10.1007/s43393-022-00103-w
Original Article

Whole-genome analyses and metabolic modification of Mycobacterium sp. LY-1 to enhance yield of 9α-OH-AD

  • W. Liu1, H. Li2,b, J. X. Zhang2, Y. N. Xu2, X. M. Zhang2, J. S. Shi2, M. A. G. Koffas3,g, Z. H. Xu1,4,5
Author information +
History +

Abstract

With the increasing application of steroid drugs as therapeutics, the demand for steroid drugs is increasing. In recent years, biological synthesis has become the standard approach to produce steroid intermediates, while this method still faces some problems such as unclear metabolic pathway and low yield. Mycobacterium sp. LY-1 can convert phytosterols into 9α-hydroxyandrost-4-ene-3,17-dione (9α-OH-AD) which is a key intermediate for the synthesis of steroid drugs with long effective time and significant pharmacological activity. In this work, the whole-genome sequence of the Mycobacterium sp. LY-1 was analyzed, and the side-chain degradation pathway of phytosterols in Mycobacterium sp. LY-1 was proposed. Meanwhile, the related key enzymes of phytosterol metabolism were identified through qRT-PCR. Through overexpressing the key enzymes including KshA2, KshB, and HsdB, the yield of 9α-OH-AD increased by 12.7% compared to that of the control. Furthermore, by optimizing the medium and culture conditions, the yield of 9α-OH-AD reached 50.4%. The maximum yield was 30.7% higher than that of the original strain. The results are of significance for the industrial production of 9α-OH-AD using metabolic engineering methods.

Keywords

Mycobacterium sp. LY-1 / Phytosterols / 9α-Hydroxyandrost-4-ene-3,17-dione / Biotransformation

Cite this article

Download citation ▾
W. Liu, H. Li, J. X. Zhang, Y. N. Xu, X. M. Zhang, J. S. Shi, M. A. G. Koffas, Z. H. Xu. Whole-genome analyses and metabolic modification of Mycobacterium sp. LY-1 to enhance yield of 9α-OH-AD. Systems Microbiology and Biomanufacturing, 2022, 4(1): 127‒137 https://doi.org/10.1007/s43393-022-00103-w

References

1.
Donova MV. Barredo J-L, Herráiz I. Steroid bioconversions. Microbial steroids, 2017 New York Springer 1-13
2.
Fernández-Cabezón L, Galán B, García JL. New insights on steroid biotechnology. Front Microbiol, 2018, 9: 958-973, pmcid: 5962712
3.
Teixeira MP, Passos EF, Haddad NF, et al.. In vitro antitumoral effects of the steroid ouabain on human thyroid papillary carcinoma cell lines. Environ Toxicol, 2021, 36(7): 1338-1348,
4.
Liu Z, Liu T, Li W, et al.. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep, 2021, 48(3): 2639-2652,
5.
Frye CA. Steroids, reproductive endocrine function, and affect. A review. Minerva Ginecol, 2009, 61(6): 541-562,
6.
Tong WY, Dong X. Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol, 2009, 3(2): 141-153,
7.
Lednicer D. . Steroid chemistry at a glance, 2011 Chichester John Wiley & Sons
8.
Javid M, Nickavar B, Vahidi H, et al.. Baeyer-Villiger oxidation of progesterone by Aspergillus sojae PTCC 5196. Steroids, 2018, 140: 52-57,
9.
Herráiz I. Chemical pathways of corticosteroids, industrial synthesis from sapogenins. Methods Mol Biol, 2017, 1645: 15-27,
10.
Capyk JK, Kalscheuer R, Stewart GR, et al.. Mycobacterial cytochrome P450 125 (Cyp125) catalyzes the terminal hydroxylation of C27 Steroids. J Biol Chem, 2009, 284(51): 35534-35542, pmcid: 2790983
11.
Karpova NV, Andryushina VA, Stytsenko TS, et al.. A search for microscopic fungi with directed hydroxylase activity for the synthesis of steroid drugs. Appl Biochem Microbiol, 2016, 52(3): 316-323,
12.
Vidal M, Becerra J, Mondaca M, et al.. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Appl Microbiol Biotechnol, 2001, 57(3): 385-389,
13.
Sukhodolskaya GV, Nikolayeva VM, Khomutov SM, et al.. Steroid-1-dehydrogenase of Mycobacterium sp. VKM Ac-1817D strain producing 9alpha-hydroxy-androst-4-ene-3,17-dione from sitosterol. Appl Microbiol Biotechnol, 2007, 74(4): 867-873,
14.
Galan B, Uhía I, García-Fernández E, et al.. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons. Microb Biotechnol, 2017, 10(1): 138-150,
15.
Yao K, Xu LQ, Wang FQ, et al.. Characterization and engineering of 3-ketosteroid-△ 1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols. Metab Eng, 2014, 24: 181-191,
16.
Shao M, Zhang X, Rao Z, et al.. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. J Ind Microbiol Biotechnol, 2019, 46(5): 635-647,
17.
Szentirmai A. Microbial physiology of sidechain degradation of sterols. J Ind Microbiol Biotechnol, 1990, 6(2): 101-115,
18.
Shtratnikova VY, Schelkunov MI, Dovbnya DV, et al.. Complete genome sequence of Mycobacterium sp. strain VKM Ac-1817D, capable of producing 9α-Hydroxy-androst-4-ene-3,17-dione from phytosterol. Genome Announcements, 2015, 3(1): e01447-14, pmcid: 4319502
19.
Luthra U, Bhosle V, Singh NK, et al. Media Optimization for 9α-hydroxyandrost-4-ene-3,17-dione Production by Mycobacterium spp. using Stat Des. 2016.
20.
Zhou L, Li H, Xu Y, et al.. Effects of a nonionic surfactant TX-40 on 9α-hydroxyandrost-4-ene-3,17-dione biosynthesis and physiological properties of Mycobacterium sp. LY-1. Process Biochem, 2019, 87: 89-94,
21.
Sun H, Yang J, He K, et al.. Enhancing production of 9α-hydroxy-androst-4-ene-3,17-dione (9-OHAD) from phytosterols by metabolic pathway engineering of mycobacteria. Chem Eng Sci, 2021, 230(47),
22.
Chang H, Zhang H, Zhu L, et al.. A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3,17-dione production with an engineered Mycobacterium neoaurum - ScienceDirect. Biochem Eng J, 2020, 164,
23.
Gao XQ, Feng JX, Wang XD, et al.. Enhanced steroid metabolites production by resting cell phytosterol bioconversion. Chem Biochem Eng Quart, 2015, 29(4): 567-573,
24.
Gao X, Feng J, Hua Q, et al.. Investigation of factors affecting biotransformation of phytosterols to 9-hydroxyandrost-4-ene-3,-17-dione based on the HP-β-CD-resting cells reaction system. Biocatal Biotransform, 2014, 32(5–6): 343-347,
25.
Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols. Biores Technol, 2008, 99(15): 6725-6737,
26.
O'Toole RF, Gautam SS. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci. Genomics, 2017, 109(5–6): 471-474,
27.
Zhou X, Zhang Y, Shen Y, et al.. Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresource Technol, 2020, 309: 123307,
28.
Liu HH, Xu LQ, Yao K, et al.. Engineered 3-ketosteroid 9α-hydroxylases in Mycobacterium neoaurum: an efficient platform for production of steroid drugs. Appl Environ Microbiol, 2018, 84(14): e02777-e2817, pmcid: 6029100
29.
Ceen EG, Herrmann JPR, Dunnill P. Solvent damage during immobilised cell catalysis and its avoidance: studies of 11α-hydroxylation of progesterone by Aspergillus ochraceus. Enzyme Microbial Technol, 1987, 25(6): 491-494,
30.
Phase N, Patil S. Natural oils are better than organic solvents for the conversion of soybean sterols to 17-ketosteroids by Mycobacterium fortuitum. World J Microbiol Biotechnol, 1994, 10(2): 228-229,
31.
Van der Geize R, Yam K, Heuser T, et al.. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci, 2007, 104(6): 1947-1952, pmcid: 1794314
32.
Yin Y. Effects of different carbon sources on growth, membrane permeability, β-sitosterol consumption, androstadienedione and androstenedione production by Mycobacterium neoaurum. Interdisc Sci Comput Life Sci., 2016, 8(1): 102-107,
Funding
The National Key R & D Program of China(No. 2019YFA0905300); Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No. TSBICIP-KJGG-001-14); The National Natural Science Foundation of China(No. 22078126); Fundamental Research Funds for the Central Universities(JUSRP221025); Qing Lan Project in Jiangsu Province

Accesses

Citations

Detail

Sections
Recommended

/