Trends in lactose-derived bioactives: synthesis and purification

Carlos Vera , Cecilia Guerrero , Andrés Illanes

Systems Microbiology and Biomanufacturing ›› 2022, Vol. 2 ›› Issue (3) : 393 -412.

PDF
Systems Microbiology and Biomanufacturing ›› 2022, Vol. 2 ›› Issue (3) : 393 -412. DOI: 10.1007/s43393-021-00068-2
Review

Trends in lactose-derived bioactives: synthesis and purification

Author information +
History +
PDF

Abstract

Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future.

Graphical abstract

Keywords

Prebiotic / Lactose / β-Galactosidase / Oligosaccharide purification / Engineering / Food Sciences

Cite this article

Download citation ▾
Carlos Vera, Cecilia Guerrero, Andrés Illanes. Trends in lactose-derived bioactives: synthesis and purification. Systems Microbiology and Biomanufacturing, 2022, 2(3): 393-412 DOI:10.1007/s43393-021-00068-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IllanesA. Whey upgrading by enzyme biocatalysis. Electron J Biotechnol, 2011.

[2]

LappaI, PapadakiA, KachrimanidouV, TerpouA, KoulougliotisD, EriotouE, KopsahelisNCheese whey processing: integrated biorefinery concepts and emerging food applications2019Foods

[3]

ChandrajithV, KarunasenaG. Applications of whey as a valuable ingredient in food industry. J Dairy Vet Sci, 2018.

[4]

MusattiA, CavicchioliD, MapelliC, BertoniD, HogenboomJA, PellegrinoL, RolliniM. From cheese whey permeate to sakacin A: a circular economy approach for the food-grade biotechnological production of an anti-listeria bacteriocin. Biomolecules, 2020.

[5]

ZhengZ, XieJ, LiuP, LiX, OuyangJ. Elegant and efficient biotransformation for dual production of D-tagatose and bioethanol from cheese whey powder. J Agric Food Chem, 2019.

[6]

GeigerB, NguyenHM, WenigS, NguyenHA, LorenzC, KittlR, MathiesenG, EijsinkVGH, HaltrichD, NguyenTH. From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J, 2016.

[7]

IllanesA, GuerreroC, VeraC, WilsonL, ConejerosR, ScottFLactose-derived prebiotics: a process perspective, 20161New YorkElsevier

[8]

KaurS, DasM. Functional foods: an overview. Food Sci Biotechnol, 2011.

[9]

XuX, WangZ, ZhangX. The human microbiota associated with overall health. Crit Rev Biotechnol, 2015.

[10]

Jędrusek-GolińskaA, GóreckaD, BuchowskiM, Wieczorowska-TobisK, Gramza-MichałowskaA, Szymandera-BuszkaK. Recent progress in the use of functional foods for older adults: a narrative review. Compr Rev Food Sci Food Saf, 2020.

[11]

GrochowiczJ, FabisiakA, NowakD. Market of functional food–legal regulations and development perspectives. Zesz Probl Postępów Nauk Rol, 2018.

[12]

GibsonGR, HutkinsR, SandersME, PrescottSL, ReimerRA, SalminenSJ, ScottK, StantonC, SwansonKS, CaniPD, VerbekeK, ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 2017.

[13]

HutkinsRW, KrumbeckJA, BindelsLB, CaniPD, FaheyG, GohYJ, HamakerB, MartensEC, MillsDA, RastalRA, VaughanE, SandersME. Prebiotics: why definitions matter. Curr Opin Biotechnol, 2016.

[14]

CharalampopoulosD, RastallRA. Prebiotics in foods. Curr Opin Biotechnol, 2012.

[15]

RastallRA, GibsonGR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol, 2015.

[16]

VenemaK, Van Den AbbeeleP. Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol, 2013.

[17]

MackieA, Mulet-CaberoAI, Torcello-GomezA. Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food Funct, 2020.

[18]

LiZ, ZhuL, ZhangW, ZhanX, GaoM. New dynamic digestion model reactor that mimics gastrointestinal function. Biochem Eng J, 2020.

[19]

MottaweaW, SultanS, LandauK, BordenaveN, HammamiR. Evaluation of the prebiotic potential of a commercial synbiotic food ingredient on gut microbiota in an ex vivo model of the human colon. Nutrients, 2020.

[20]

PhamVT, MohajeriMH. The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benef Microbes, 2018.

[21]

StrategyR. Prebiotics, global market trajectory & analytics. 2021. https://www.strategyr.com/market-report-prebiotics-forecasts-global-industry-analysts-inc.asp. Accessed 6 Aug 2021.

[22]

MartinsGN, UretaMM, TymczyszynEE, CastilhoPC, Gomez-ZavagliaA. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front Nutr, 2019.

[23]

VeraC, IllanesA, GuerreroC. Enzymatic production of prebiotic oligosaccharides. Curr Opin Food Sci, 2021.

[24]

IbrahimOO. Technological aspects of fructo-oligosaccharides (FOS), production processes, physiological properties, applications and health benefits. J Food Chem Nanotechnol, 2021.

[25]

Research and Market. Inulin market-forecasts from 2020 to 2025. 2021. https://www.researchandmarkets.com/reports/5238718/inulin-market-forecasts-from-2020-to-2025. Accessed 6 Aug 2021.

[26]

Research and Market. Galacto-oligosaccharide (GOS). Global market trajectory & analytics. 2021. https://www.researchandmarkets.com/reports/5302733/galacto-oligosaccharide-gos-global-market. Accessed 6 Aug 2021.

[27]

VeraC, GuerreroC, AburtoC, CordovaA, IllanesA. Conventional and non-conventional applications of β-galactosidases. Biochim Biophys Acta-Proteins Proteom, 2020.

[28]

NooshkamM, BabazadehA, JooyandehH. Lactulose: properties, techno-functional food applications, and food grade delivery system. Trends Food Sci Technol, 2018.

[29]

ChenC, DengJ, LvX, LiJ, DuG, LiH, LiuL. Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from Arthrobacter sp. 10138. Bioengineered, 2020.

[30]

ZhangW, ChenJ, ChenQ, WuH, MuW. Sugar alcohols derived from lactose: lactitol, galactitol, and sorbitol. Appl Microbiol Biotechnol, 2020.

[31]

CardosoT, MarquesC, DagostinJLA, MassonML. Lactobionic acid as a potential food ingredient: recent studies and applications. J Food Sci, 2019.

[32]

SokołowskaE, SadowskaA, SawickaD, Kotulska-BąblińskaI, CarH. A head-to-head comparison review of biological and toxicological studies of isomaltulose, D-tagatose, and trehalose on glycemic control. Crit Rev Food Sci Nutr, 2021.

[33]

GuerreroC, VeraC, IllanesA. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidases of different origin. Food Chem, 2013.

[34]

LogtenbergMJ, AkkermanR, HobéRG, DonnersKMH, Van LeeuwenSS, HermesGDA, de HaanBJ, FaasMM, BuwaldaPL, ZoetendalEG, de VosP, ScholsHA. Structure-specific fermentation of galacto-oligosaccharides, isomalto-oligosaccharides and isomalto/malto-polysaccharides by infant fecal microbiota and impact on dendritic cell cytokine responses. Mol Nutr Food Res, 2021.

[35]

ArnoldJW, RoachJ, FabellaS, MoorfieldE, DingS, BlueE, DagherS, MagnessS, TamayoR, Bruno-BarcenaJM, Azcarate-PerilMA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome, 2021.

[36]

HansonS, BestM, BryanMC, WongCH. Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem Sci, 2004.

[37]

VeraC, GuerreroC, ConejerosR, IllanesA. Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb Technol, 2012.

[38]

KruschitzA, NidetzkyB. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv, 2020.

[39]

SakaiY, SekiN, HamanoK, OchiH, AbeF, MasudaK, IinoH. Prebiotic effect of two grams of lactulose in healthy Japanese women: a randomised, double-blind, placebo-controlled crossover trial. Benef Microbes, 2019.

[40]

PanesarPS, KumariS. Lactulose: production, purification and potential applications. Biotechnol Adv, 2011.

[41]

SitanggangAB, DrewsA, KraumeM. Recent advances on prebiotic lactulose production. World J Microbiol Biotechnol, 2020.

[42]

GuerreroC, VeraC, ConejerosR, IllanesA. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme Microb Technol, 2015.

[43]

GuerreroC, AburtoC, SúarezS, VeraC, IllanesA. Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. Int J Biol Macromol, 2020.

[44]

Julio-GonzalezLC, Hernández-HernándezO, Javier MorenoF, OlanoA, CorzoN. High-yield purification of commercial lactulose syrup. Sep Purif Technol, 2019.

[45]

GuerreroC, VeraC, PlouF, IllanesA. Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J Mol Catal B Enzym, 2011.

[46]

KimYS, OhDK. Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour Technol, 2012.

[47]

ShenS, ZhangY, YangR, HuaX, ZhangW, ZhaoW. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis. J Mol Catal B Enzym, 2015.

[48]

ShenQ, ZhangY, YangR, PanS, DongJ, FanY, HanL. Enhancement of isomerization activity and lactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chem, 2016.

[49]

ChenQ, XiaoY, ZhangW, ZhangT, JiangB, StresslerT, FischerL, MuW. Current research on cellobiose 2-epimerase: enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci Technol, 2018.

[50]

O’BrienJMcSweeneyP, FoxP. Non-Enzymatic degradation pathways of lactose and their Significance in dairy products. Advanced dairy chemistry, 2009New YorkSpringer231-294.

[51]

WatanabeJ, NishimukaiM, TaguchiH, SenouraT, HamadaS, MatsuiH, YamamotoT, WasakiJ, HaraH, ItoS. Prebiotic properties of epilactose. J Dairy Sci., 2008.

[52]

ChenQ, XiaoY, WuYMuW, ZhangW, ChenQ. Characteristics of cellobiose 2-epimerase and its application in enzymatic production of lactulose and epilactose. Novel enzymes for functional carbohydrates production, 2021SingapureSpringer105-23.

[53]

KrewinkelM, GoschM, RentschlerE, FischerL. Epilactose production by 2 cellobiose 2-epimerases in natural milk. J. Dairy Sci., 2014.

[54]

ChenQ, HeW, YanX, ZhangT, JiangB, StresslerT, FischerL, MuW. Construction of an enzymatic route using a food-grade recombinant Bacillus subtilis for the production and purification of epilactose from lactose. J. Dairy Sci., 2018.

[55]

SilvérioSC, MacedoEA, TeixeiraJA, RodriguesLR. Perspectives on the biotechnological production and potential applications of lactosucrose: a review. J Funct Foods., 2015.

[56]

DuarteLS, SchöfferJN, LorenzoniASG, RodriguesRC, RodriguesE, HertzPF. A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochem., 2017.

[57]

Martinez-MonteagudoSI, EnteshariM, MetzgerL. Lactitol: production, properties, and applications. Trends Food Sci Technol., 2019.

[58]

SarenkovaL, CiprovicaI. The current status and future perspectives of lactobionic acid production: a review. Rural Dev., 2018.

[59]

PedruzziL, Borges da SilvaEA, RodriguesAE. Production of clear lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: akinetic study. Enzyme Microb Technol., 2011.

[60]

TianQ, FengY, HuangH, ZhangJ, YuY, GuanZ, CaiY, LiaoX. Production of lactobionic acid from lactose using the cellobiose dehydrogenase-3-HAA-laccase system from Pycnoporus sp. SYBC-L10. Lett Appl Microbiol., 2018.

[61]

AlonsoS, RenduelesM, DiazM. Efficient lactobionic acid production from whey by pseudomonas taetrolens under pH shift conditions. Bioresour Technol., 2011.

[62]

AlonsoS. Exploiting the bioengineering versatility of lactobionic acid in targeted nanosystems and biomaterials. J Control Release., 2018.

[63]

Beadle JR, Saunders JP, Thomas J, Wajda J (1992) Process for manufacturing tagatose. United States Patent. US5078796A.

[64]

RoyS, ChikkerurJ, RoySC, DhaliA, KolteAP, SridharM, SamantaAK. Tagatose as a potential nutraceutical: production, properties, biological roles, and applications. J Food Sci., 2018.

[65]

IzumoriK, MiyoshiT, TokudaS, YamabeK. Production of D-tagatose from dulcitol by Arthrobacter globiformis. Appl Environ Microbiol., 1984.

[66]

YoshiharaK, ShinoharaY, HirotsuT, IzumoriK. Bioconversion of D-psicose to D-tagatose and D-talitol by Mucoraceae fungi. J Biosci Bioeng., 2006.

[67]

JagtapSS, SinghR, KangYC, ZhaoH, LeeJK. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in d-tagatose production. Enzyme Microb Technol., 2014.

[68]

LeeDW, JangHJ, ChoeEA, KimBC, LeeSJ, KimSB, HongYH, PyunYR. Characterization of a thermostable L-arabinose (D-galactose) isomerase from the hyperthermophilic eubacterium Thermotoga maritima. Appl Environ Microbiol., 2004.

[69]

RavikumarY, PonpandianLN, ZhangG, YunJ, QiX. Harnessing L-arabinose isomerase for biological production of D-tagatose: recent advances and its applications. Trends Food Sci Technol., 2021.

[70]

KimHJ, KimJH, OhHJ, OhDK. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose. J Appl Microbiol., 2006.

[71]

RhimiM, AghajariN, JuyM, ChouayekhH, MaguinE, HaserR, BejarS. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production. Biochimie., 2009.

[72]

de SousaM, MeloVMM, HissaDC, ManzoRM, MammarellaEJ, AntunesASLM, GarciaJL, PesselaBC, GoncalvesLRB. One-step immobilization and stabilization of a recombinant Enterococcus faecium DBFIQ E36 L-arabinose isomerase for D-tagatose synthesis. Appl Biochem Biotechnol., 2019.

[73]

JayamuthunagaiJ, SrisowmeyaG, ChakravarthyM, GautamP. D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour Technol., 2017.

[74]

KhuwijitjaruP, MilasingN, AdachiSProduction of D-tagatose: A review with emphasis on subcritical fluid treatment, 2018SciEng Heal Studhttps://doi.org/10.14456/sehs.2018.15

[75]

BortoneN, FidaleoM. Stabilization of immobilized L-arabinose isomerase for the production of D-tagatose from D-galactose. Biotechnol Prog., 2020.

[76]

TorresP, Batista-VieraF. Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules., 2017.

[77]

TorresP, Batista-VieraF. Production of D-tagatose and D-fructose from whey by co-immobilized enzymatic system. Mol Catal., 2019.

[78]

TorricoD, TamJ, FuentesS, GonzalezC, DunsheaFR. D-Tagatose as a sucrose substitute and its effect on the physicochemical properties and acceptability of strawberry-flavored yogurt. Foods, 2019.

[79]

EnsorE, BanfieldAB, SmithRR, WilliamsJ, LodderRA. Safety and efficacy of D-tagatose in glycemic control in subjects with type 2 diabetes. J Endocrinol Diabetes Obes., 2015, 3: 1065

[80]

JayamuthunagaiJ, GautamP, SrisowmeyaG, ChakravarthyM. Biocatalytic production of D-tagatose: a potential rare sugar with versatile applications. Crit Rev Food Sci Nutr., 2017.

[81]

LeeSH, HongSH, AnJU, KimKR, KimDE, KangLW, OhDK. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases. Sci Rep., 2017.

[82]

Food Safety Authority of Ireland. Substantial equivalence opinion: D-tagatose, Dublin. 2016. https://www.fsai.ie/uploadedFiles/Science_and_Health/Novel_Foods/Notifications/Substantial%20equivalence%20opinion(1).pdf. Accessed 12 Sep 2021.

[83]

Lee Y, Park I, Shin S, Yang S, Cho H, Kim S, Choi E. A fructose-C4-epimerase and preparation methods for producing tagatose using the same, US 2020/0263217 A1. 2020.

[84]

Martinez-VillaluengaC, Cardelle-CobasA, OlanoA, CorzoN, VillamielM, JimenoML. Enzymatic synthesis and identification of two trisaccharides produced from lactulose by transgalactosylation. J Agric Food Chem., 2008.

[85]

Cardelle-CobasA, OlanoA, CorzoN, VillamielM, CollinsM, KolidaS, RastallR. In vitro fermentation of lactulose derived oligosaccharides by mixed faecal microbiota. J Agric Food Chem., 2012.

[86]

PadillaB, Ruiz-MatuteAI, BellochC, Cardelle-CobasA, CorzoN, ManzanaresP. Evaluation of oligosaccharide synthesis from lactose and lactulose using β-galactosidases from Kluyveromyces isolated from artisanal cheeses. J Agric Food Chem., 2012.

[87]

FernandezJ, MorenoFJ, OlanoA, ClementeA, VillarCJ, LomboF. A galacto-oligosaccharides preparation derived from lactulose protects against colorectal cancer development in an animal model. Front Microbiol., 2018.

[88]

ScottF, VeraC, ConejerosRIllanesA, GuerreroC, VeraC, WilsonL, ConejerosR, ScottF. Technical and economic analysis of industrial production of lactose-derived prebiotics with focus on galacto-oligosaccharides. Lactose-derived prebiotics: a process perspective, 2016New YorkElsevier261-84.

[89]

GanzleMG, HaaseG, JelenP. Lactose: crystallization, hydrolysis and value-added derivatives. Int Dairy J., 2008.

[90]

BenkouloucheM, FaureR, Remaud-SimeonM, MoulisC, AndreI. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus., 2019.

[91]

DowneyAM, HocekM. Strategies toward protecting group free glycosylation through selective activation of the anomeric center. Beilstein J Org Chem., 2017.

[92]

CordovaA, AstudilloC, IllanesAGalanakisCM. Membrane technology for the purification of enzymatically produced oligosaccharides. Separation of functional molecules in food by membrane technology, 2018New YorkElsevier113-53

[93]

WheelwrightSM. The design of downstream processes for large scale protein purification. J Biotechnol., 1989.

[94]

ŁąckiKM, JosephJ, ErikssonKOJagschiesG, LindskogE, ŁąckK, GalliherP. Downstream process design, scale-up principles, and process Modeling. Biopharmaceutical processing development, design, and implementation of manufacturing processes, 2018New YorkElsevier637-74.

[95]

CharcossetC. Classical and recent applications of membrane processes in the food industry. Food Eng Rev., 2021.

[96]

ArgentaAB, ScheerADP. Membrane separation processes applied to whey: a review. Food Rev Int., 2020.

[97]

D’SouzaNM, MawsonAJ. Membrane cleaning in the dairy industry: a review. Crit Rev Food Sci Nutr., 2005.

[98]

Aguirre MontesdeocaV, Van der PadtA, BoomRM, JanssenAEM. Modelling of membrane cascades for the purification of oligosaccharides. J Memb Sci., 2016.

[99]

SalehTA, GuptaVKSalehTA, VinodKG. An Overview of Membrane science and technology. Nanomaterial and polymer membranes synthesis, characterization, and applications, 2016New YorkElsevier1-23

[100]

CordovaA, AstudilloC, SantibanezL, CassanoA, Ruby-FigueroaR, IllanesA. Purification of galacto-oligosaccharides (GOS) by three-stage serial nanofiltration units under critical transmembrane pressure conditions. Chem Eng Res Des., 2017.

[101]

GRAS Associates. Gras notice 729. Galactooligosaccharides (GOS), food usage conditions for general recognition of safety. 2017. https://www.fda.gov/media/111860/download . Accessed1 Sept 2021.

[102]

Spherix Consulting Inc. Gras notice 334. Generally recognized as safe (GRAS) determination for the use of galacto-oligosaccharides (GOS) in foods and infant formulas. 2010. http://wayback.archive-it.org/7993/20171031050145/. https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM269519.pdf. Accessed 1 Sep 2021.

[103]

SinghR. Introduction to membrane technology. Hybrid Membrane Systems for Water Purification., 2005.

[104]

Nestle Nutrition U.S. GRAS notice 620. GRAS Exemption Claim for Galacto-ligosaccharides. 2016. https://wayback.archive-it.org/7993/20190208035755/. Accessed 1 Sept 2021.

[105]

Clasado Inc. GRAS Notice 484. GRAS Exemption Claim for Galacto-oligosaccharides. 2013. http://wayback.archive-it.org/7993/20171031055001/. Accessed 1 Sept 2021.

[106]

Friesland Foods Domo. Gras notice 236. GRAS exemption claim for galacto-oligosaccharides (GOS). 2007. https://wayback.archive-it.org/7993/20190208035755/. Accessed 1 Sept 2021.

[107]

CordovaA, AstudilloC, GiornoL, GuerreroC, ConidiC, IllanesA, CassanoA. Nanofiltration potential for the purification of highly concentrated enzymatically produced oligosaccharides. Food Bioprod Process., 2016.

[108]

Gonzalez-DelgadoI, Lopez-MunozMJ, MoralesG, SeguraY. Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyceslactis. Int Dairy J., 2016.

[109]

GoulasAK, KapasakalidisPG, SinclairHR, RastallR, GrandisonAS. Purification of oligosaccharides by nanofiltration. J Memb Sci., 2002.

[110]

MichelonM, MineraAP, CarvalhoAL, MaugeriFF. Concentration and purification of galacto-oligosaccharides using nanofiltration membranes. Int J Food Sci Technol., 2014.

[111]

RenH, FeiJ, ShiX, ZhaoT, ChengH, ZhaoN, ChenY, YingH. Continuous ultrafiltration membrane reactor coupled with nanofiltration for the enzymatic synthesis and purification ofgalactosyl-oligosaccharides. Sep Purif Technol., 2015.

[112]

PruksasriS, NguyenTH, HaltrichD, NovalinS. Fractionation of a galacto-oligosaccharides solution at low and high temperature using nanofiltration. Sep Purif Technol., 2015.

[113]

WiśniewskiŁ, PereiraCSM, PolakovičM, RodriguesAE. Chromatographic separation of prebiotic oligosaccharides. Case study: separation of galacto-oligosaccharides on a cation exchanger. Adsorption., 2014.

[114]

WiśniewskiŁ, AntošovaM, PolakovičM. Simulated moving bed chromatography separation of galacto-oligosaccharides. Acta Chim Slovaca., 2013.

[115]

MuellerI, Seidel-MorgensternA, HamelC. Simulated-moving bed technology for purification of the prebiotics galacto-oligosaccharides. Sep Purif Technol., 2021.

[116]

NagyG, PengT, PohlNLB. Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates. Anal Methods., 2017.

[117]

BuszewskiB, NogaS. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem., 2012.

[118]

CooperWTMeyersRA. Normal-phase liquid chromatography. Encyclopedia of analytical chemistry: applications, theory and instrumentation, 2006ChichesterWiley.

[119]

MoldoveanuSC, DavidVMoldoveanuSC. Basic information about HPLC. Essentials in modern HPLC separations, 2013New YorkElsevier1-51

[120]

BreretonKR, GreenDB. Isolation of saccharides in dairy and soy products by solid-phase extraction coupled with analysis by ligand-exchange chromatography. Talanta., 2012.

[121]

StefanssonM, WesterlundD. Ligand-exchange chromatography of carbohydrates and glycoconjugates. J Chromatogr A., 1996.

[122]

WachW, FornefettI, ButtersackC, BuchholzK. Adsorption and HPLC of carbohydrates and related hydroxy compounds on zeolites. Anal. Methods., 2018.

[123]

WachW, ButtersackC, BuchholzK. Chromatography of mono and disaccharides on granulated pellets of hydrophobic zeolites. J Chromatogr A., 2018.

[124]

KuhnRC, FilhoFM. Purification of fructooligosaccharides in an activated charcoal fixed bed column. N Biotechnol., 2010.

[125]

Julio-GonzalezLC, Ruiz-AceitunoL, CorzoN, OlanoA. Purification of lactulose derived-galactooligosaccharides from enzymatic reaction mixtures. Int Dairy J., 2018.

[126]

WolfgangJ, PriorA, BartHJ, MessenbockRC, ByersCH. Continuous separation of carbohydrates by ion-exchange chromatography. Sep Sci Technol., 1997.

[127]

RajendranA, ParedesG, MazzottiM. Simulated moving bed chromatography for the separation of enantiomers. J Chromatogr A., 2009.

[128]

NicoudRMAhujaS. Simulated moving-bed chromatography for biomolecules.In. Handbook of Bioseparations, 2000LondonAcademic Press475-509.

[129]

DendeneK, GuihardL, BalannecB, BariouB. Study of the separation of lactose, lactulose and galactose by liquid chromatography using cationic ion-exchange resin columns. Chromatographia., 1995.

[130]

KozempelMF, KurantzMJ, CraigJC, HicksKB. Development of a continuous lactulose process: separation and purification. Biotechnol Prog., 1995.

[131]

TamuraA, ShaY, AdachiS. Effects of counter-ion form of a cation-exchange resin and ethanol content of eluent on the distribution coefficients of galactose, tagatose, and talose onto the resin. Food Sci Technol Res., 2016.

[132]

PedruzziI, da SilvaEAB, RodriguesAE. Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Sep Purif Technol., 2008.

[133]

KawaseM, PilgrimA, ArakiT, HashimotoK. Lactosucrose production using a simulated moving bed reactor. Chem Eng Sci., 2001.

[134]

PilgrimA, KawaseM, MatsudaF, MiuraK. Modeling of the simulated moving-bed reactor for the enzyme-catalyzed production of lactosucrose. Chem Eng Sci., 2006.

[135]

GTC Nutrition. GRAS notice 285. Galactooligosaccharide GRAS notice. 2009. http://wayback.archive-it.org/7993/20171031055001/. https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm269255.pdf. Accessed 1 Sept 2021.

[136]

Nutrasource Inc. GRAS notice 352. GRAS exemption claim for D-tagatose as an ingredient in foods. 2010. http://wayback.archive-it.org/7993/20171031055001/. https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm269560.pdf. Accessed 1 Sept 2021.

[137]

CossuR, EhrigHJ, MuntoniACossuR, RainerS. Physical-chemical leachate treatment. Solid waste landfilling, 2018New YorkElsevier575-632.

[138]

HuH, XuKRenH, ZhangX. Physicochemical technologies for HRPs and risk control. High-risk pollutants in wastewater, 2020New YorkElsevier169-207.

[139]

DoranPMBioprocess engineering principles, 20132New YorkElsevier445-595.

[140]

HarcumSAbbottA, EllisonM. Purification of protein solutions. Biologically inspired textiles, 20081New YorkElsevier26-43.

[141]

AyaweiN, EbelegiAN, WankasiD. Modelling and interpretation of adsorption isotherms. J Chem., 2017.

[142]

JiD, SimsI, XuM, StewartI, AgyeiD. Production and identification of galacto-oligosaccharides from lactose using β-Dgalactosidases from Lactobacillus leichmannii 313. Carbohydr Polym Technol Appl., 2021.

[143]

Van VelthuijsenJA. Food additives derived from lactose: lactitol and lactitol palmitate. J Agric Food Chem., 1979.

[144]

VeraC, IllanesAIllanesA, ConejerosR, ScottF, GuerreroC, VeraC, WilsonL. Lactose-derived nondigestible oligosaccharides and other high added-value products. Lactose-derived prebiotics: a process perspective, 2016New YorkElsevier87-110.

[145]

BoonMA, Vant RietK, JanssenAEM. Enzymatic synthesis of oligosaccharides: product removal during a kinetically controlled reaction. Biotechnol Bioeng., 2000.

[146]

VeraC, GuerreroC, IllanesA. Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations. Carbohydr Res., 2011.

[147]

AlbayrakN, YangST. Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng., 2002.

[148]

HuX, LiuC, JinZ, TianY. Fractionation of starch hydrolysate into dextrin fractions with low dispersity by gradient alcohol precipitation. Sep Purif Technol., 2015.

[149]

SenD, GoslingA, StevensGW, BhattacharyaPK, BarberAR, KentishSE, BhattacharjeeC, GrasSL. Galactosyl oligosaccharide purification by ethanol precipitation. Food Chem., 2011.

[150]

OostenBJ. Solubility diagram of lactose and lactulose in water. Recl Des Travr Chim Des Pays-Bas., 1967.

[151]

ZanganehN, ZabetM. Studying the effect of ethanol and operating temperature on purification of lactulose syrup containing lactose. World Acad Sci Eng Technol Int J Biol Biomol Agric Food Biotechnol Eng., 2015.

[152]

MontanesF, OlanoA, IbanezE, FornariT. Modeling solubilities of sugars in alcohols based on original experimental data. AIChE J., 2007.

[153]

LeeSH, HongSH, KimKR, OhDK. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol Lett., 2017.

[154]

PazmandiM, KovacsZ, BalgaE, KovacsM, MarazA. Production of high-purity galacto-oligosaccharides by depleting glucose and lactose from galacto-oligosaccharide syrup with yeasts. Yeast., 2020.

[155]

GuerreroC, VeraC, NovoaC, DumontJ, AcevedoF, IllanesA. Purification of highly concentrated galacto-oligosaccharide preparations by selective fermentation with yeasts. Int Dairy J., 2014.

[156]

SangwanV, TomarSK, AliB, SinghRRB, SinghAK, MandalS. Galactooligosaccharides purification using microbial fermentation and assessment of its prebiotic potential by in vitro method. Int J Curr Microbiol App Sci., 2014, 3: 573-85

[157]

GancedoJM. Carbon catabolite repression in yeast. Eur J Biochem., 1992.

[158]

BrucknerR, TitgemeyerF. Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett., 2002.

[159]

Simpson-LavyK, KupiecM. Carbon Catabolite Repression in yeast is not limited to Glucose. Sci Rep., 2019.

[160]

AburtoC, GuerreroC, VeraC, WilsonL, IllanesA. Co-immobilized β-galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides. Enzym Microb Technol., 2018.

[161]

OnishiN, TanakaT. Galacto-oligosaccharide production using a recycling cell culture of Sterigmatomyces elviae CBS8119. Lett Appl Microbiol., 1998.

[162]

OnishiN, YamashiroA, YokozekiK. Production of galacto-oligosaccharide from lactose by Sterigmatomyces elviae CBS8119. Appl Environ Microbiol., 1995.

[163]

ChengCC, YuMC, ChengTC, SheuDC, DuanKJ, TaiWL. Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus. BiotechnolLett., 2006.

[164]

LiZ, XiaoM, LuL, LiY. Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells. Process Biochem., 2008.

[165]

HernandezO, Ruiz-MatuteAI, OlanoA, MorenoFJ, SanzML. Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides. Int Dairy J., 2009.

[166]

SantibanezL, GuerreroC, IllanesA. Raw galacto-oligosaccharide purification by consecutive lactose hydrolysis and selective bioconversion. Int Dairy J., 2017.

[167]

GuerreroC, VeraC, IllanesA. Selective bioconversion with yeast for the purification of raw lactulose and transgalactosylated oligosaccharides. Int Dairy J., 2018.

[168]

Okabe T, Aga H, Kunota H, Miyake M. Lactosucrose high content saccharide, its preparation and uses. U.S. 20080027027A1. 2008.

[169]

Soni & Associates Inc. GRAS notice 569. GRAS Notification for galacto-oligosaccharide (infant formula use). 2015. http://wayback.archive-it.org/7993/20171031055001/. https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm475293.pdf. Accessed 1 Sept 2021.

[170]

LiangM, ChenM, LiuX, ZhaiY, LiuXW, ZhangH, XiaoM, WangP. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation. Appl Microbiol Biotechnol., 2012, 93: 1469-74.

[171]

WanarskaM, KurJ. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c. Microb Cell Fact., 2012, 11: 113.

[172]

CervantesFV, NeifarS, MerdzoZ, Vina-GonzalezJ, Fernandez-ArrojoL, BallesterosAO, Fernandez-LobatoM, BejarS, PlouFJ. A three-step process for the bioconversion of whey permeate into a glucose D-free tagatose syrup. Catalysts., 2020, 10: 1-14.

[173]

MaischbergerT, NguyenTH, SukyaiP, KittlR, RivaS, LudwigR, HaltrichD. Production of lactose-freegalacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydr Res., 2008, 343: 2140-7.

[174]

SheldonRA. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain Chem Eng., 2018, 6: 32-48.

Funding

Fondo de Fomento al Desarrollo Científico y Tecnológico(11180282)

Fondo Nacional de Desarrollo Científico y Tecnológico(1190104)

RIGHTS & PERMISSIONS

Jiangnan University

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/