Neural circuitry of rapid eye movement sleep homeostasis: Mechanistic insights and pathological implications

Ting He

Sleep Research ›› 2025, Vol. 2 ›› Issue (3) : 128 -144.

PDF
Sleep Research ›› 2025, Vol. 2 ›› Issue (3) : 128 -144. DOI: 10.1002/slp2.70010
REVIEW

Neural circuitry of rapid eye movement sleep homeostasis: Mechanistic insights and pathological implications

Author information +
History +
PDF

Abstract

Rapid eye movement (REM) sleep is a unique brain state crucial for emotion, memory, and plasticity. Unlike well-understood non-REM (NREM) sleep homeostasis, REM sleep homeostasis remains less clearly defined. This review highlights recent progress in understanding REM sleep homeostasis, focusing on its neurophysiological markers, neural circuits, and significance for disease development. We start by outlining key theoretical models of REM sleep pressure, rebound, and gating and analyzing electrophysiological markers such as PGO wave density, hippocampal theta oscillations, and the pattern of REM sleep episodes. Then, we explore the hierarchical organization of REM-regulating networks, including brainstem cholinergic-GABAergic loops, hypothalamic centers, and limbic-cortical circuits, that reflect REM sleep pressure and influence its behavioral effects. Importantly, we discuss how disruptions in REM sleep homeostasis may contribute to the pathophysiology of major depressive disorder, post-traumatic stress disorder, and Parkinson's disease through changes in prefrontal-limbic connectivity, monoaminergic signaling, and REM sleep-dependent neuroplasticity. By linking circuit-level mechanisms with clinical implications, this review offers a comprehensive framework for understanding REM sleep homeostasis and guiding new therapies.

Keywords

brainstem nuclei / homeostasis / hypothalamic circuits / limbic system / neuropsychiatric disorders / REM sleep

Cite this article

Download citation ▾
Ting He. Neural circuitry of rapid eye movement sleep homeostasis: Mechanistic insights and pathological implications. Sleep Research, 2025, 2(3): 128-144 DOI:10.1002/slp2.70010

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tobler I, Franken P, Scherschlicht R. Sleep and EEG spectra in the rabbit under baseline conditions and following sleep deprivation. Physiol Behav. 1990; 48(1): 121-129. https://doi.org/10.1016/0031-9384(90)90272-6

[2]

Dijk DJ, Brunner DP, Borbely AA. Time course of EEG power density during long sleep in humans. Am J Physiol Regul Integr Comp Physiol. 1990; 258(3): 1-12. https://doi.org/10.1152/ajpregu.1990.258.3.r650

[3]

Lancel M, Van Riezen H, Glatt A. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation. Sleep. 1992; 15(2): 102-118. https://doi.org/10.1093/sleep/15.2.102

[4]

Ehlen JC, Jefferson F, Brager AJ, Benveniste M, Paul KN. Period-amplitude analysis reveals wake-dependent changes in the electroencephalogram during sleep deprivation. Sleep. 2013; 36(11): 1723-1735. https://doi.org/10.5665/sleep.3138

[5]

van Hasselt SJ, Martinez-Gonzalez D, Mekenkamp GJ, et al. Sleep pressure causes birds to trade asymmetric sleep for symmetric sleep. Curr Biol. 2025; 35(8): 1918-1926.e3. https://doi.org/10.1016/j.cub.2025.03.008

[6]

Franken P, Dijk DJ. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat Rev Neurosci. 2024; 25(1): 43-59. https://doi.org/10.1038/s41583-023-00764-z

[7]

Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science (1979). 1953; 118(3062): 273-274. https://doi.org/10.1126/science.118.3062.273

[8]

Jouvet M. Paradoxical sleep - a study of its nature and mechanisms. Prog Brain Res. 1965; 18(1): 20-62. https://doi.org/10.1016/S0079-6123(08)63582-7

[9]

Jouvet M. Paradoxical sleep mechanisms. Am Sleep Disord Assoc Sleep Res Soc. 1994; 17(2): 77-83. https://doi.org/10.1016/B978-0-323-04019-8.00003-2

[10]

Peever J, Fuller PM. The biology of REM sleep. Curr Biol. 2017; 27(22): 1237-1248. https://doi.org/10.1016/j.cub.2017.10.026

[11]

Wang YQ, Liu WY, Li L, Qu WM, Huang ZL. Neural circuitry underlying REM sleep: a review of the literature and current concepts. Prog Neurobiol. 2021; 204(November 2020):102106. https://doi.org/10.1016/j.pneurobio.2021.102106

[12]

Benington JH, Heller HC. REM-sleep timing is controlled homeostatically by accumulation of REM-sleep propensity in non-REM sleep. Am J Physiol Regul Integr Comp Physiol. 1994; 266(6): 1-9. https://doi.org/10.1152/ajpregu.1994.266.6.r1992

[13]

Benington JH, Heller HC. Does the function of REM sleep concern non-REM sleep or waking? Prog Neurobiol. 1994; 44(5): 433-449. https://doi.org/10.1016/0301-0082(94)90005-1

[14]

Le Bon O. Relationships between REM and NREM in the NREM-REM sleep cycle: a review on competing concepts. Sleep Med. 2020; 70: 6-16. https://doi.org/10.1016/j.sleep.2020.02.004

[15]

Park SH, Weber F. Neural and homeostatic regulation of REM sleep. Front Psychol. 2020; 11(1662): 1-16. https://doi.org/10.3389/fpsyg.2020.01662

[16]

Morden B, Mitchell G, Dement W. Selective REM sleep deprivation and compensation phenomena in the rat. Brain Res. 1967; 5(3): 339-349. https://doi.org/10.1016/0006-8993(67)90042-X

[17]

Vogel GW. A review of REM sleep deprivation. Arch Gen Psychiatry. 1975; 32(6): 749-761. https://doi.org/10.1001/archpsyc.1975.01760240077006

[18]

De Andrés I, Garzón M, Villablanca JR. The disconnected brain stem does not support rapid eye movement sleep rebound following selective deprivation. Sleep. 2003; 26(4): 419-425. https://doi.org/10.1093/sleep/26.4.419

[19]

Beersma DGM, Dijk DJ, Blok CGH, Everhardus I. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalogr Clin Neurophysiol. 1990; 76(2): 114-122. https://doi.org/10.1016/0013-4694(90)90209-3

[20]

Bizzi E, Brooks DC. Pontine reticular formation: relation to lateral geniculate nucleus during deep sleep. Science (1979). 1963; 14(3577): 270-272. https://doi.org/10.1016/j.bpj.2015.06.056

[21]

Datta S. Cellular basis of pontine ponto-geniculo occipital wave generation and modulation. Cell Mol Neurobiol. 1997; 17(3): 341-365. https://doi.org/10.1023/A:1026398402985

[22]

Kaufman LS. PGO waves in rats in the non-paradoxical sleep states. Brain Res. 1983; 276(1): 73-80. https://doi.org/10.1016/0006-8993(83)90549-8

[23]

Simon RP, Gershon MD, Brooks DC. The role of the raphe nuclei in the regulation of ponto-geniculo-occipital wave activity. Brain Res. 1973; 58(2): 313-330. https://doi.org/10.1016/0006-8993(73)90004-8

[24]

Schott AL, Baik J, Chung S, Weber F. A medullary hub for controlling REM sleep and pontine waves. Nat Commun. 2023; 14(1): 1-17. https://doi.org/10.1038/s41467-023-39496-0

[25]

Karashima A, Nakao M, Honda K, Iwasaki N, Katayama N, Yamamoto M. Theta wave amplitude and frequency are differentially correlated with pontine waves and rapid eye movements during REM sleep in rats. Neurosci Res. 2004; 50(3): 283-289. https://doi.org/10.1016/j.neures.2004.07.007

[26]

Lim AS, Lozano AM, Mora E, et al. Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep. 2007; 30(7): 823-827. https://doi.org/10.1093/sleep/30.7.823

[27]

Gutierrez Herrera C, Girard F, Bilella A, et al. Neurons in the Nucleus papilio contribute to the control of eye movements during REM sleep. Nat Commun. 2019; 10(1): 1-11. https://doi.org/10.1038/s41467-019-13217-y

[28]

Gao JX, Yan G, Li XX, et al. The ponto-geniculo-occipital (PGO) waves in dreaming: an overview. Brain Sci. 2023; 13(1350): 1-15.

[29]

Chen HL, Gao JX, Chen YN, et al. Rapid eye movement sleep during early life: a comprehensive narrative review. Int J Environ Res Public Health. 2022; 19(20): 1-21. https://doi.org/10.3390/ijerph192013101

[30]

Shaffery JP, Roffwarg HP, Speciale SG, Marks GA. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens. Dev Brain Res. 1999; 114(1): 109-119. https://doi.org/10.1016/S0165-3806(99)00027-9

[31]

Snipes S, Krugliakova E, Meier E, Huber R. The theta paradox: 4-8 Hz EEG oscillations reflect both sleep pressure and cognitive control. J Neurosci. 2022; 42(45): 8569-8586. https://doi.org/10.1523/JNEUROSCI.1063-22.2022

[32]

Yang RH, Hou XH, Xu XN, et al. Sleep deprivation impairs spatial learning and modifies the hippocampal theta rhythm in rats. Neuroscience. 2011; 173(1): 116-123. https://doi.org/10.1016/j.neuroscience.2010.11.004

[33]

Borbély AA, Tobler I, Hanagasioglu M. Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res. 1984; 14(3): 171-182. https://doi.org/10.1016/0166-4328(84)90186-4

[34]

Vyazovskiy VV, Tobler I. Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res. 2005; 1050(1-2): 64-71. https://doi.org/10.1016/j.brainres.2005.05.022

[35]

Wen YJ, Yang WJ, Guo CN, et al. Pontine control of rapid eye movement sleep and fear memory. CNS Neurosci Ther. 2023; 29(6): 1602-1614. https://doi.org/10.1111/cns.14123

[36]

Izawa S, Chowdhury S, Miyazaki T, et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science. 1979/2020; 365(6459): 1308-1313. https://doi.org/10.1126/science.aax9238.REM

[37]

Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010; 11(2): 114-126. https://doi.org/10.1038/nrn2762

[38]

Vargas I, Payne JD, Muench A, Kuhlman KR, Lopez-Duran NL. Acute sleep deprivation and the selective consolidation of emotional memories. Learn Mem. 2019; 26(6): 176-181. https://doi.org/10.1101/lm.049312.119

[39]

Gott JA, Liley DTJ, Hobson JA. Towards a functional understanding of PGO waves. Front Hum Neurosci. 2017; 11(3): 1-12. https://doi.org/10.3389/fnhum.2017.00089

[40]

Koo BB, Wiggins R, Molina C. REM rebound and CPAP compliance. Sleep Med. 2012; 13(7): 864-868. https://doi.org/10.1016/j.sleep.2012.03.019

[41]

Horne J. REM sleep vs exploratory wakefulness: alternatives within adult ‘sleep debt. Sleep Med Rev. 2020; 50(1):101252. https://doi.org/10.1016/j.smrv.2019.101252

[42]

Nielsen TA, Paquette T, Solomonova E, Lara-Carrasco J, Popova A, Levrier K. REM sleep characteristics of nightmare sufferers before and after REM sleep deprivation. Sleep Med. 2010; 11(2): 172-179. https://doi.org/10.1016/j.sleep.2008.12.018

[43]

De Gennaro L, Ferrara M, Bertini M. The relationship between frequency of rapid eye movements in REM sleep and SWS rebound. J Sleep Res. 2000; 9(2): 155-159. https://doi.org/10.1046/j.1365-2869.2000.00193.x

[44]

Yang H, Haack M, Dang R, Gautam S, Simpson NS, Mullington JM. Heart rate variability rebound following exposure to persistent and repetitive sleep restriction. Sleep. 2019; 42(2): 1-9. https://doi.org/10.1093/sleep/zsy226

[45]

Pagel JF. The persistent paradox of rapid eye movement sleep (REMS): brain waves and dreaming. Brain Sci. 2024; 14(7):622. https://doi.org/10.3390/brainsci14070622

[46]

Benca RM. REM sleep and mental disorders on the 70th anniversary of the discovery of REM sleep. J Sleep Res. 2024; 34(August): 1-7. https://doi.org/10.1111/jsr.14364

[47]

Mendoza Alvarez M, Balthasar Y, Verbraecken J, et al. Systematic review: REM sleep, dysphoric dreams and nightmares as transdiagnostic features of psychiatric disorders with emotion dysregulation - clinical implications. Sleep Med. 2025; 127(October 2024): 1-15. https://doi.org/10.1016/j.sleep.2024.12.037

[48]

Wu Z, Wu J, Xie C, et al. Risk factors for rapid eye-movement sleep-related behavioral disorders (RBDs): a systematic review and a meta-analysis. Gen Hosp Psychiatry. 2022; 79(July): 118-127. https://doi.org/10.1016/j.genhosppsych.2022.10.009

[49]

Zhang C, Zhu DM, Zhang Y, et al. Neural substrates underlying REM sleep duration in patients with major depressive disorder: a longitudinal study combining multimodal MRI data. J Affect Disord. 2024; 344(8): 546-553. https://doi.org/10.1016/j.jad.2023.10.090

[50]

McCarley RW. REM sleep and depression: common neurobiological control mechanisms. Am J Psychiatr. 1982; 139(5): 565-570. https://doi.org/10.1176/ajp.139.5.565

[51]

Wang YQ, Li R, Zhang MQ, Zhang Z, Qu WM, Huang ZL. The neurobiological mechanisms and treatments of REM sleep disturbances in depression. Curr Neuropharmacol. 2015; 13(4): 543-553. https://doi.org/10.2174/1570159x13666150310002540

[52]

Zhang Y, Lei L, Liu Z, et al. Theta oscillations: a rhythm difference comparison between major depressive disorder and anxiety disorder. Front Psychiatry. 2022; 13(Mdd):827536. https://doi.org/10.3389/fpsyt.2022.827536

[53]

Liscombe MP, Hoffmann RF, Trivedi MH, Parker MK, Rush AJ, Armitage R. Quantitative EEG amplitude across REM sleep periods in depression: preliminary report. J Psychiatry Neurosci. 2002; 27(1): 40-46.

[54]

Armitage R, Hoffmann RF, Emslie GJ, Weinberg WA, Mayes TL, Rush AJ. Sleep microarchitecture as a predictor of recurrence in children and adolescents with depression. Int J Neuropsychopharmacol. 2002; 5(3): 217-228. https://doi.org/10.1017/S1461145702002948

[55]

Ross RJ, Ball WA, Levitt DR, Gresch PJ, Morrison AR. Effects of monoamine reuptake blockade on ponto-geniculo-occipital wave activity. Neuropharmacology. 1990; 21(58): 99-104. https://www.unhcr.org/publications/manuals/4d9352319/unhcr-protection-training-manual-european-border-entry-officials-2-legal.html?query=excom1989

[56]

Sommerfelt L. Chronic zimeldine administration to cats: sustained increase of serotonergic effect as measured with sleep parameters. Pharmacol Toxicol. 1990; 66(2): 128-132. https://doi.org/10.1111/j.1600-0773.1990.tb00718.x

[57]

Ross RJ. The changing REM sleep signature of posttraumatic stress disorder. Sleep. 2014; 37(8): 1281-1282. https://doi.org/10.5665/sleep.3912

[58]

Germain A. Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatr. 2013; 170(4): 372-382. https://doi.org/10.1176/appi.ajp.2012.12040432

[59]

Lavie P, Hefez A, Halperin G, Enoch D. Long-term effects of traumatic war-related events on sleep. Am J Psychiatr. 1979; 136(2): 175-178. https://doi.org/10.1176/ajp.136.2.175

[60]

Rho YA, Sherfey J, Vijayan S. Emotional memory processing during REM sleep with implications for post-traumatic stress disorder. J Neurosci. 2023; 43(3): 433-446. https://doi.org/10.1523/JNEUROSCI.1020-22.2022

[61]

Reuveni I, Herz N, Bonne O, et al. Neural oscillations while remembering traumatic memories in PTSD. bioRxiv. 2019. Published online. https://www.biorxiv.org/content/early/2019/05/17/639310

[62]

Lo Y, Yi PL, Hsiao YT, Lee TY, Chang FC. A prolonged stress rat model recapitulates some PTSD-Like changes in sleep and neuronal connectivity. Commun Biol. 2023; 6(1): 1-19. https://doi.org/10.1038/s42003-023-05090-9

[63]

Mao MJ, Gao YZ, Yang JJ, Zhou ZQ, Ji MH. Abnormal theta oscillation aggravated by chronic stress in the CA1 may mediate the deterioration of fear memory impairment induced by lipopolysaccharide. Brain Res Bull. 2021; 171(3): 172-182. https://doi.org/10.1016/j.brainresbull.2021.03.012

[64]

Hegde P, Jayakrishnan HR, Chattarji S, Kutty BM, Laxmi TR. Chronic stress-induced changes in REM sleep on theta oscillations in the rat hippocampus and amygdala. Brain Res. 2011; 1382(1): 155-164. https://doi.org/10.1016/j.brainres.2011.01.055

[65]

Machida M, Sweeten BLW, Adkins AM, Wellman LL, Sanford LD. The basolateral amygdala mediates the role of rapid eye movement sleep in integrating fear memory responses. Life. 2022; 12(17): 1-14. https://doi.org/10.3390/life12010017

[66]

Sanford LD, Silvestri AJ, Ross RJ, Morrison AR. Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch Ital Biol. 2001; 139(3): 169-183.

[67]

Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1998; 25(2): 293-308. https://doi.org/10.1093/sleep/9.2.293

[68]

St Louis EK, Boeve AR, Boeve BF. REM sleep behavior disorder in parkinson’s disease and other synucleinopathies. Mov Disord. 2017; 32(5): 645-658. https://doi.org/10.1002/mds.27018

[69]

Dauvilliers Y, Schenck CH, Postuma RB, et al. REM sleep behaviour disorder. Nat Rev Dis Prim. 2018; 4(1): 1-19. https://doi.org/10.1038/s41572-018-0016-5

[70]

Kashiwagi M, Beck G, Kanuka M, et al. A pontine-medullary loop crucial for REM sleep and its deficit in Parkinson’s disease. Cell. 2024; 187(22): 6272-6289.e21. https://doi.org/10.1016/j.cell.2024.08.046

[71]

Stefani A, Antelmi E, Arnaldi D, et al. From mechanisms to future therapy: a synopsis of isolated REM sleep behavior disorder as early synuclein-related disease. Mol Neurodegener. 2025; 20(1): 1-17. https://doi.org/10.1186/s13024-025-00809-0

[72]

Memon AA, Catiul C, Irwin Z, et al. Quantitative sleep electroencephalogram and cognitive performance in Parkinson’s disease with and without rapid eye movement sleep behavior disorder. Front Neurol. 2023; 14(9): 1-11. https://doi.org/10.3389/fneur.2023.1223974

[73]

Gagnon JF, Fantini ML, Bédard MA, et al. Vol 62; 2004: 401-406. https://doi.org/10.1212/01.WNL.0000106460.34682.Association between waking EEG slowing and REM sleep behavior disorder in PD without dementia Neurology3.

[74]

Rodrigues BJ, Gagnon JF, Postuma RB, Bertrand JA, Petit D, Montplaisir J. Electroencephalogram slowing predicts neurodegeneration in rapid eye movement sleep behavior disorder. Neurobiol Aging. 2016; 37(1): 74-81. https://doi.org/10.1016/j.neurobiolaging.2015.10.007

[75]

Rodrigues Brazète J, Montplaisir J, Petit D, et al. Electroencephalogram slowing in rapid eye movement sleep behavior disorder is associated with mild cognitive impairment. Sleep Med. 2013; 14(11): 1059-1063. https://doi.org/10.1016/j.sleep.2013.06.013

[76]

Barbato G, Wehr TA. Homeostatic regulation of REM Sleep in humans during extended sleep. Sleep. 1998; 21(3): 267-276. https://doi.org/10.1093/sleep/21.3.267

[77]

Brunner DP, Dijk DJ, Tobler I, Borbély AA. Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr Clin Neurophysiol. 1990; 75(6): 492-499. https://doi.org/10.1016/0013-4694(90)90136-8

[78]

Dunmyre JR, Mashour GA, Booth V. Coupled flip-flop model for REM sleep regulation in the rat. PLoS One. 2014; 9(4): 1-16. https://doi.org/10.1371/journal.pone.0094481

[79]

Mccarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science (1979). 1975; 189(4196): 58-60. https://doi.org/10.1126/science.1135627

[80]

McCarley RW, Massaquoi SG. A limit cycle mathematical model of the REM sleep oscillator system. Am J Physiol Regul Integr Comp Physiol. 1986; 251(6): 1011-1029. https://doi.org/10.1152/ajpregu.1986.251.6.r1011

[81]

JA H, RW M, PW W. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science (1979). 1975; 189(7): 55-57.

[82]

Luppi PH, Gervasoni D, Verret L, et al. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris. 2006; 100(5-6): 271-283. https://doi.org/10.1016/j.jphysparis.2007.05.006

[83]

Luppi PH, Gervasoni D, Boissard R, et al. Brainstem structures responsible for paradoxical sleep onset and maintenance. Arch Ital Biol. 2004; 142(4): 397-411.

[84]

Luppi PH, Clément O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Curr Opin Neurobiol. 2013; 23(5): 786-792. https://doi.org/10.1016/j.conb.2013.02.006

[85]

Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006; 441(7093): 589-594. https://doi.org/10.1038/nature04767

[86]

Clément O, Sapin E, Bérod A, Fort P, Luppi PH. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep. 2011; 34(4): 419-423. https://doi.org/10.1093/sleep/34.4.419

[87]

Sapin E, Lapray D, Bérod A, et al. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One. 2009; 4(1): 1-12. https://doi.org/10.1371/journal.pone.0004272

[88]

Jouvet M, Michel F. New research on the structures responsible for the “paradoxical phase” of sleep. J Physiol Paris. 1960; 52(1): 130-131.

[89]

Siegel JM. REM sleep: a biological and psychological paradox. Sleep Med Rev. 2011; 15(3): 139-142. https://doi.org/10.1016/j.smrv.2011.01.001

[90]

Luppi PH, Chancel A, Malcey J, Cabrera S, Fort P, Maciel RM. Which structure generates paradoxical (REM) sleep: the brainstem, the hypothalamus, the amygdala or the cortex? Sleep Med Rev. 2024; 74(12): 1-9. https://doi.org/10.1016/j.smrv.2024.101907

[91]

Vetrivelan R, Bandaru SS. Neural control of REM sleep and motor atonia: current perspectives. Curr Neurol Neurosci Rep. 2023; 23(12): 907-923. https://doi.org/10.1007/s11910-023-01322-x

[92]

Vertes RP. Brainstem control of the events of rem sleep. Prog Neurobiol. 1984; 22(3): 241-288. https://doi.org/10.1016/0301-0082(84)90020-0

[93]

Month JM, Monti D. Role of dorsal raphe nucleus serotonin 5-HT1A receptor in the regulation of REM sleep. Elsevier. 2012; 66(21): 1999-2012. https://doi.org/10.1016/s0024-3205(99)00649-9

[94]

Shouse MN, Siegel JM. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 1992; 571(1): 50-63. https://doi.org/10.1016/0006-8993(92)90508-7

[95]

Shiromani PJ, Kilduff TS, Bloom FE, McCarley RW. Cholinergically induced REM sleep triggers fos-like immunoreactivity in dorsolateral pontine regions associated with REM sleep. Brain Res. 1992; 580(1-2): 351-357. https://doi.org/10.1016/0006-8993(92)90968-F

[96]

Fish DR, Sawyers D, Smith SJ, Allen PJ, Murray NM, Marsden CD. Motor inhibition from the brainstem is normal in torsion dystonia during REM sleep. J Neurol Neurosurg Psychiatry. 1991; 54(2): 140-144. https://doi.org/10.1136/jnnp.54.2.140

[97]

Siegel JM, Nienhuis R, Tomaszewski KS. REM sleep signs rostral to chronic transections at the pontomedullary junction. Neurosci Lett. 1984; 45(3): 241-246. https://doi.org/10.1016/0304-3940(84)90233-7

[98]

Carroll C, Landau ME. Effects of pontine lesions on REM sleep. Curr Neurol Neurosci Rep. 2014; 14(7): 1-8. https://doi.org/10.1007/s11910-014-0460-x

[99]

Luebke JI, Greene RW, Semba K, Kamondi A, Mccarlfy RW, Reiner PB. Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci U S A. 1992; 89(2): 743-747. https://doi.org/10.1073/pnas.89.2.743

[100]

Williams JA, Reiner PB. Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J Neurosci. 1993; 13(9): 3878-3883. https://doi.org/10.1523/jneurosci.13-09-03878.1993

[101]

Osorio-forero A, Foustoukos G, Cardis R, et al. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM - REM sleep cycle. Nat Neurosci. 2025; 28(January): 84-96. https://doi.org/10.1038/s41593-024-01822-0

[102]

Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci. 2014; 34(13): 4708-4727. https://doi.org/10.1523/JNEUROSCI.2617-13.2014

[103]

Cox J, Pinto L, Dan Y. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat Commun. 2016; 7(5): 1-7. https://doi.org/10.1038/ncomms10763

[104]

Weber F, Hoang Do JP, Chung S, et al. Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons. Nat Commun. 2018; 9(1): 1-13. https://doi.org/10.1038/s41467-017-02765-w

[105]

Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience. 2008; 152(3): 849-857. https://doi.org/10.1016/j.neuroscience.2007.12.014

[106]

Sakai K. Behavioural state-specific neurons in the mouse medulla involved in sleep-wake switching. Eur J Neurosci. 2018; 47(12): 1482-1503. https://doi.org/10.1111/ejn.13963

[107]

Clément O, Garcia SV, Libourel PA, Arthaud S, Fort P, Luppi PH. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study. PLoS One. 2014; 9(5): 1-13. https://doi.org/10.1371/journal.pone.0096851

[108]

Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol. 2022; 32(1): 37-50.e6. https://doi.org/10.1016/j.cub.2021.10.030

[109]

Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y. Control of REM sleep by ventral medulla GABAergic neurons. Nature. 2015; 526(7573): 435-438. https://doi.org/10.1038/nature14979

[110]

Zhao YN, Jiang JB, Tao SY, et al. GABAergic neurons in the rostromedial tegmental nucleus are essential for rapid eye movement sleep suppression. Nat Commun. 2022; 13(1): 1-18. https://doi.org/10.1038/s41467-022-35299-x

[111]

Xi MC, Morales FR, Chase MH. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol. 1999; 82(4): 2015-2019. https://doi.org/10.1152/jn.1999.82.4.2015

[112]

Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol (Paris). 2016; 594(19): 5391-5414. https://doi.org/10.1113/JP271324

[113]

Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci. 2002; 16(10): 1959-1973. https://doi.org/10.1046/j.1460-9568.2002.02257.x

[114]

Krenzer M, Anaclet C, Vetrivelan R, et al. Brainstem and spinal cord circuitry regulating rem sleep and muscle atonia. PLoS One. 2011; 6(10): 1-10. https://doi.org/10.1371/journal.pone.0024998

[115]

Sakai K, Crochet S, Onoe H. Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol. 2001; 139(1-2): 93-107.

[116]

Sastre JP, Buda C, Kitahama K, Jouvet M. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience. 1996; 74(2): 415-426. https://doi.org/10.1016/0306-4522(96)00190-X

[117]

Lai YY, Clements JR, Wu XY, Shalita T, Kuo J, Siegel J. Brainstem projections to the ventromedial medulla in cat: retrograde transport horseradish peroxidase and immunohistochemical studies. J Comp Neurol. 1999; 408(3): 419-436. https://doi.org/10.1002/(SICI)1096-9861(19990607)408:3<419::AID-CNE8>3.0.CO;2-4

[118]

Garzón M, de Andrés I, Reinoso-Suárez F. Sleep patterns after carbachol delivery in the ventral oral pontine tegmentum of the cat. Neuroscience. 1998; 83(4): 1137-1144. https://doi.org/10.1016/s0306-4522(97)00494-6

[119]

Adamantidis AR, de Lecea L. Sleep and the hypothalamus. Science (1979). 2023; 282(6669): 405-412. https://doi.org/10.1126/science.adh8285

[120]

Zamboni G, Perez E, Amici R, Jones CA, Parmeggiani PL. Control of REM sleep: an aspect of the regulation of physiological homeostasis. Arch Ital Biol. 1999; 137(4): 249-262.

[121]

Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol (Paris). 2002; 543(2): 665-677. https://doi.org/10.1113/jphysiol.2002.023085

[122]

Gvilia I, Turner A, McGinty D, Szymusiak R. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci. 2006; 26(11): 3037-3044. https://doi.org/10.1523/JNEUROSCI.4827-05.2006

[123]

Maurer JJ, Lin A, Jin X, et al. Homeostatic regulation of rapid eye movement sleep by the preoptic area of the hypothalamus. Elife. 2023; 12: 1-20. https://doi.org/10.7554/eLife.92095

[124]

Mondino A, Hambrecht-Wiedbusch VS, Li D, et al. Glutamatergic neurons in the preoptic hypothalamus promote wakefulness, destabilize NREM sleep, suppress REM sleep, and regulate cortical dynamics. J Neurosci. 2021; 41(15): 3462-3478. https://doi.org/10.1523/JNEUROSCI.2718-20.2021

[125]

Mondino A, Jadidian A, Toth BA, et al. Regulation of REM and NREM sleep by preoptic glutamatergic neurons. Sleep. 2025; 5(1): 1-12. https://doi.org/10.1093/sleep/zsaf141

[126]

Blanco-centurion C, Luo S, Spergel DJ, et al. Dynamic network activation of hypothalamic MCH neurons in REM sleep and exploratory behavior. J Neurosci. 2019; 1(25): 1-18. https://doi.org/10.1523/jneurosci.0305-19.2019

[127]

Jego S, Glasgow SD, Herrera CG, et al. Role of MCH neurons in paradoxical (REM) sleep control. Sleep. 2013; 16(11): 1637-1643. https://doi.org/10.1038/nn.3522

[128]

Tsunematsu T, Ueno T, Tabuchi S, et al. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci. 2014; 34(20): 6896-6909. https://doi.org/10.1523/JNEUROSCI.5344-13.2014

[129]

Jego S, Glasgow SD, Herrera CG, et al. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013; 16(11): 1637-1643. https://doi.org/10.1038/nn.3522

[130]

Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One. 2010; 5(7): 1-12. https://doi.org/10.1371/journal.pone.0011766

[131]

Agamme ALDA, Tufik S, Torterolo P, D’Almeida V. Effects of paradoxical sleep deprivation on MCH and hypocretin systems. Sleep Sci. 2024; 17(4): 392-400. https://doi.org/10.1055/s-0044-1782171

[132]

Dias AAAL, Aguilar Calegare BF, Fernandes L, et al. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Pept (NY). 2015; 74: 9-15. https://doi.org/10.1016/j.peptides.2015.10.001

[133]

Mickelsen LE, Bolisetty M, Chimileski BR, et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci. 2019; 22(4): 642-656. https://doi.org/10.1038/s41593-019-0349-8

[134]

Cvetkovic V, Brischoux F, Jacquemard C, Fellmann D, Griffond B, Risold PY. Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. J Neurochem. 2004; 91(4): 911-919. https://doi.org/10.1111/j.1471-4159.2004.02776.x

[135]

Romero-grimaldi C, Moreno-lo B. Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J Comp Neurol. 2007; 346(505): 339-346. https://doi.org/10.1002/cne

[136]

Kitka T, Adori C, Katai Z, et al. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int. 2011; 59(5): 686-694. https://doi.org/10.1016/j.neuint.2011.06.015

[137]

Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM. Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res. 2009; 1265(5982): 103-110. https://doi.org/10.1016/j.brainres.2009.02.010

[138]

Monti JM, Lagos P, Jantos H, Torterolo P. Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuropsychopharmacol Biol Psychiatry. 2015; 56(1): 185-188. https://doi.org/10.1016/j.pnpbp.2014.09.003

[139]

Monti JM, Torterolo P, Lagos P. Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev. 2013; 17(4): 293-298. https://doi.org/10.1016/j.smrv.2012.10.002

[140]

Feng H, Qiao QC, Luo QF, et al. Orexin neurons to sublaterodorsal tegmental nucleus pathway prevents sleep onset REM sleep-like behavior by relieving the REM sleep pressure. Research. 2024; 7(Lc): 1-16. https://doi.org/10.34133/research.0355

[141]

Liu Q, Bell BJ, Kim DW, et al. A clock-dependent brake for rhythmic arousal in the dorsomedial hypothalamus. Nat Commun. 2023; 14(1): 1-14. https://doi.org/10.1038/s41467-023-41877-4

[142]

Sayar-Atasoy N, Aklan I, Yavuz Y, et al. AgRP neurons encode circadian feeding time. Nat Neurosci. 2024; 27(1): 102-115. https://doi.org/10.1038/s41593-023-01482-6

[143]

Maquet P, Peters JM, Aerts J, et al. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 1996; 383(6596): 163-166. https://doi.org/10.1038/383163a0

[144]

Girardeau G, Inema I, Buzsáki G. Reactivations of emotional memory in the hippocampus-amygdala system during sleep. Nat Neurosci. 2017; 20(11): 1634-1642. https://doi.org/10.1038/nn.4637

[145]

Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science (1979). 2022; 375(6584): 994-1000. https://doi.org/10.1126/science.abl6618

[146]

Hasegawa E, Li Y, Sakurai T. Regulation of REM sleep in mice: the role of dopamine and serotonin function in the basolateral amygdala. Neurosci Res. 2024; 200(September 2023): 28-33. https://doi.org/10.1016/j.neures.2023.09.003

[147]

da Silva Rocha-Lopes J, Machado RB, Suchecki D. Chronic REM sleep restriction in juvenile male rats induces anxiety-like behavior and alters monoamine systems in the amygdala and hippocampus. Mol Neurobiol. 2018; 55(4): 2884-2896. https://doi.org/10.1007/s12035-017-0541-3

[148]

Zhen W, Lu C, Ling Z, Xuemin W. Paradoxical sleep deprivation modulates depressive-like behaviors by regulating the MAOA levels in the amygdala and hippocampus. Brain Res. 2017; 1664: 17-24. https://doi.org/10.1016/j.brainres.2017.03.022

[149]

Paré D, Headley DB. The amygdala mediates the facilitating influence of emotions on memory through multiple interacting mechanisms. Neurobiol Stress. 2023; 24(2): 1-12. https://doi.org/10.1016/j.ynstr.2023.100529

[150]

Popa D, Duvarci S, Popescu AT, Léna C, Paré D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci U S A. 2010; 107(14): 6516-6519. https://doi.org/10.1073/pnas.0913016107

[151]

Wellman LL, Fitzpatrick ME, Machida M, Sanford LD. The basolateral amygdala determines the effects of fear memory on sleep in an animal model of PTSD. Exp Brain Res. 2014; 232(5): 1555-1565. https://doi.org/10.1007/s00221-014-3850-z

[152]

Machida M, Wellman LL, Fitzpatrick ME, et al. Effects of optogenetic inhibition of BLA on sleep brief optogenetic inhibition of the basolateral amygdala in mice alters effects of stressful experiences on rapid eye movement sleep. Sleep. 2017; 40(4): 1-13. https://doi.org/10.1093/sleep/zsx020

[153]

Machida M, Sweeten BLW, Adkins AM, Wellman LL, Sanford LD. Basolateral amygdala regulates EEG theta-activity during rapid eye movement sleep. Neuroscience. 2021; 468(1): 176-185. https://doi.org/10.1016/j.neuroscience.2021.06.018

[154]

Hashizume M, Ito R, Suge R, Hojo Y, Murakami G, Murakoshi T. Correlation between cued fear memory retrieval and oscillatory network inhibition in the amygdala is disrupted by acute REM sleep deprivation. Neuroscience. 2024; 536(1): 12-20. https://doi.org/10.1016/j.neuroscience.2023.08.037

[155]

Grosmark AD, Mizuseki K, Pastalkova E, Diba K, Buzsáki G. REM sleep reorganizes hippocampal excitability. Neuron. 2012; 75(6): 1001-1007. https://doi.org/10.1016/j.neuron.2012.08.015

[156]

Bjorness TE, Booth Grp V, Poe GR. Hippocampal theta power pressure builds over non-REM sleep and dissipates within REM sleep episodes. Arch Ital Biol. 2018; 156(3): 112-126. https://doi.org/10.1177/0022146515594631

[157]

Tsunematsu T, Patel AA, Onken A, Sakata S. State-dependent brainstem ensemble dynamics and their interactions with hippocampus across sleep states. Elife. 2020; 9(1): 1-22. https://doi.org/10.7554/eLife.52244

[158]

Pronier É, Morici JF, Girardeau G. The role of the hippocampus in the consolidation of emotional memories during sleep. Trends Neurosci. 2023; 46(11): 912-925. https://doi.org/10.1016/j.tins.2023.08.003

[159]

Ravassard P, Hamieh AM, Joseph MA, et al. REM sleep-dependent bidirectional regulation of hippocampal-based emotional memory and LTP. Cerebr Cortex. 2016; 26(4): 1488-1500. https://doi.org/10.1093/cercor/bhu310

[160]

Kim EY, Mahmoud GS, Grover LM. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci Lett. 2005; 388(3): 163-167. https://doi.org/10.1016/j.neulet.2005.06.057

[161]

Vijayan S, Lepage KQ, Kopell NJ, Cash SS. Frontal beta-theta network during REM sleep. Elife. 2017; 6(1): 1-19. https://doi.org/10.7554/eLife.18894

[162]

Nishida M, Hirai N, Miwakeichi F, et al. Theta oscillation in the human anterior cingulate cortex during all-night sleep: an electrocorticographic study. Neurosci Res. 2004; 50(3): 331-341. https://doi.org/10.1016/j.neures.2004.08.004

[163]

Uchida S, Maehara T, Hirai N, Kawai K, Shimizu H. Theta oscillation in the anterior cingulate and beta-1 oscillation in the medial temporal cortices: a human case report. J Clin Neurosci. 2003; 10(3): 371-374. https://doi.org/10.1016/S0967-5868(03)00025-0

[164]

Abdou K, Nomoto M, Aly MH, et al. Prefrontal coding of learned and inferred knowledge during REM and NREM sleep. Nat Commun. 2024; 15(1): 1-15. https://doi.org/10.1038/s41467-024-48816-x

[165]

Hong J, Lozano DE, Beier KT, Chung S, Weber F. Prefrontal cortical regulation of REM sleep. Nat Neurosci. 2023; 26(10): 1820-1832. https://doi.org/10.1038/s41593-023-01398-1

[166]

Aime M, Calcini N, Borsa M, et al. Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science (1979). 2022; 376(6594): 724-730. https://doi.org/10.1126/science.abk2734

[167]

Hong J, Choi K, Fuccillo MV, Chung S, Weber F. Infralimbic activity during REM sleep facilitates fear extinction memory. Curr Biol. 2025; 34(10): 2247-2255. https://doi.org/10.1016/j.cub.2024.04.018

[168]

McEown K, Takata Y, Cherasse Y, Nagata N, Aritake K, Lazarus M. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption. Elife. 2016; 5(12): 1-13. https://doi.org/10.7554/eLife.20269

[169]

Liu H, Huang X, Li Y, et al. TNF signaling pathway-mediated microglial activation in the PFC underlies acute paradoxical sleep deprivation-induced anxiety-like behaviors in mice. Brain Behav Immun. 2022; 100: 254-266. https://doi.org/10.1016/j.bbi.2021.12.006

[170]

Wang Z, Fei X, Liu X, et al. REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex. Nat Commun. 2022; 13(1): 1-17. https://doi.org/10.1038/s41467-022-34720-9

[171]

Koike BDV, Farias KS, Billwiller F, et al. Electrophysiological evidence that the retrosplenial cortex displays a strong and specific activation phased with hippocampal theta during paradoxical (REM) sleep. J Neurosci. 2017; 37(33): 8003-8013. https://doi.org/10.1523/JNEUROSCI.0026-17.2017

[172]

Dong Y, Li J, Zhou M, Du Y, Liu D. Cortical regulation of two-stage rapid eye movement sleep. Nat Neurosci. 2022; 25(12): 1675-1682. https://doi.org/10.1038/s41593-022-01195-2

[173]

de Almeida-Filho DG, Koike BDV, Billwiller F, et al. Hippocampus-retrosplenial cortex interaction is increased during phasic REM and contributes to memory consolidation. Sci Rep. 2021; 11(1): 1-14. https://doi.org/10.1038/s41598-021-91659-5

[174]

Kupfer DJ, Foster FG. Interval between onset of sleep and rapid-eye-movement sleep as an indicator of depression. Lancet. 1972; 300(7779): 684-686. https://doi.org/10.1016/S0140-6736(72)92090-9

[175]

Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D. REM sleep dysregulation in depression: state of the art. Sleep Med Rev. 2013; 17(5): 377-390. https://doi.org/10.1016/j.smrv.2012.11.001

[176]

Jernajczyk W. Latency of eye movement and other REM sleep parameters in bipolar depression. Biol Psychiatry. 1986; 21(6): 465-472. https://doi.org/10.1016/0006-3223(86)90188-5

[177]

Adrien J, Dugovic C, Martin P. Sleep-wakefulness patterns in the helpless rat. Physiol Behav. 1991; 49(2): 257-262. https://doi.org/10.1016/0031-9384(91)90041-L

[178]

Grønli J, Murison R, Bjorvatn B, Sørensen E, Portas CM, Ursin R. Chronic mild stress affects sucrose intake and sleep in rats. Behav Brain Res. 2004; 150(2): 139-147. https://doi.org/10.1016/S0166-4328(03)00252-3

[179]

Wang YQ, Tu ZC, Xu XY, Qu W, Urade Y, Huang Z. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats. J Neurochem. 2012; 120(2): 314-324. https://doi.org/10.1111/j.1471-4159.2011.07558.x

[180]

Dugovic C, Maccari S, Weibel L, Turek FW, Van Reeth O. High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci. 1999; 19(19): 8656-8664. https://doi.org/10.1523/jneurosci.19-19-08656.1999

[181]

Ebdlahad S, Nofzinger EA, James JA, Buysse DJ, Price JC, Germain A. Comparing neural correlates of REM sleep in posttraumatic stress disorder and depression: a neuroimaging study. Psychiatry Res Neuroimaging. 2013; 214(3): 422-428. https://doi.org/10.1016/j.pscychresns.2013.09.007

[182]

Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A. 1996; 93(9): 3908-3913. https://doi.org/10.1073/pnas.93.9.3908

[183]

Liu S, Chen J, Guan L, et al. The brain, rapid eye movement sleep, and major depressive disorder: a multimodal neuroimaging study. Prog Neuropsychopharmacol Biol Psychiatry. 2025; 136(9): 1-11. https://doi.org/10.1016/j.pnpbp.2024.111151

[184]

Mizuseki K, Buzsaki G. Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Philosophical Trans R Soc B Biol Sci. 2014; 369(1635): 1-8. https://doi.org/10.1098/rstb.2012.0530

[185]

Chang CH, Chen MC, Qiu MH, Lu J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology. 2014; 86: 125-132. https://doi.org/10.1016/j.neuropharm.2014.07.005

[186]

Guo Y, Song Y, Cao F, et al. Ventrolateral periaqueductal gray GABAergic neurons promote arousal of sevoflurane anesthesia through cortico-midbrain circuit. iScience. 2023; 26(9): 1-18. https://doi.org/10.1016/j.isci.2023.107486

[187]

Pereira PA, Vilela M, Sousa S, Neves J, Paula-barbosa MM, Madeira MD. Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience. 2015; 284: 707-718. https://doi.org/10.1016/j.neuroscience.2014.10.054

[188]

Aizawa H, Cui W, Tanaka K, Okamoto H. Hyperactivation of the habenula as a link between depression and sleep disturbance. Front Hum Neurosci. 2013; 7(12): 1-6. https://doi.org/10.3389/fnhum.2013.00826

[189]

Wang RYAG, Aghajanian GK. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science (1979). 1977; 562(2): 89-91. https://doi.org/10.1126/science.194312

[190]

Liu H, Qu N, Gonzalez NV, et al. A light-responsive neural circuit suppresses feeding. J Neurosci. 2024; 44(30): 1-16. https://doi.org/10.1523/JNEUROSCI.2192-23.2024

[191]

Liu H, Rastogi A, Narain P, et al. Blunted diurnal firing in lateral habenula projections to dorsal raphe nucleus and delayed photoentrainment in stress-susceptible mice. PLoS Biol. 2021; 19(3): 1-24. https://doi.org/10.1371/journal.pbio.3000709

[192]

Aizawa H, Yanagihara S, Kobayashi M, et al. The synchronous activity of lateral habenular neurons is essential for regulating hippocampal theta oscillation. J Neurosci. 2013; 33(20): 8909-8921. https://doi.org/10.1523/JNEUROSCI.4369-12.2013

[193]

Zhang Z, Zhang W, Fang Y, et al. A potentiation of REM sleep-active neurons in the lateral habenula may be responsible for the sleep disturbance in depression. Curr Biol. 2024; 34(15): 3287-3300. https://doi.org/10.1016/j.cub.2024.05.075

[194]

Kang Z, Zheng Z, Guo W. Efficacy of agomelatine on sleep disorders and lateral habenula neuronal activity in chronic restraint stress depression model mice. Psychopharmacol Berl. 2024; 242(2): 353-360. https://doi.org/10.1007/s00213-024-06681-y

[195]

Ma Hying, Xu Y, Qiao D, et al. Abnormal sleep features in adolescent MDD and its potential in diagnosis and prediction of early efficacy. Sleep Med. 2023; 106: 116-122. https://doi.org/10.1016/j.sleep.2023.01.021

[196]

Lechinger J, Koch J, Weinhold SL, et al. REM density is associated with treatment response in major depression: antidepressant pharmacotherapy vs. psychotherapy. J Psychiatr Res. 2021; 133(11): 67-72. https://doi.org/10.1016/j.jpsychires.2020.12.009

[197]

DelRosso LM, Bruni O, Mogavero MP, Fickensher A, Schenck CH, Ferri R. Frequency of antidepressant use and clinical characteristics of children and adolescents undergoing polysomnography: an observational study. Child Adolesc Psychiatry Ment Health. 2023; 17(1): 1-7. https://doi.org/10.1186/s13034-023-00599-7

[198]

Sharpley AL, Cowen PJ. Effect of pharmacologic treatments on the sleep of depressed patients. Biol Psychiatry. 1995; 37(2): 85-98. https://doi.org/10.1016/0006-3223(94)00135-P

[199]

Gervasoni D, Panconi E, Henninot V, et al. Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacol Biochem Behav. 2002; 73(3): 557-563. https://doi.org/10.1016/S0091-3057(02)00812-2

[200]

Matsuda Y, Ozawa N, Shinozaki T, et al. Chronic antidepressant treatment rescues abnormally reduced REM sleep theta power in socially defeated rats. Sci Rep. 2021; 11(1): 1-14. https://doi.org/10.1038/s41598-021-96094-0

[201]

de Oliveira P, Cella C, Locker N, et al. Improved sleep, memory, and cellular pathological features of tauopathy, including the NLRP3 inflammasome, after chronic administration of trazodone in rTg4510 mice. J Neurosci. 2022; 42(16): 3494-3509. https://doi.org/10.1523/JNEUROSCI.2162-21.2022

[202]

Kheirkhah M, Duncan WC, Yuan Q, et al. REM density predicts rapid antidepressant response to ketamine in individuals with treatment-resistant depression. Neuropsychopharmacology. 2025; 50(January): 1-6. https://doi.org/10.1038/s41386-025-02066-7

[203]

Kostyalik D, Vas S, Kátai Z, et al. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains. BMC Neurosci. 2014; 15(1): 1-16. https://doi.org/10.1186/s12868-014-0120-8

[204]

McCarthy A, Wafford K, Shanks E, Ligocki M, Edgar DM, Dijk DJ. REM sleep homeostasis in the absence of REM sleep: effects of antidepressants. Neuropharmacology. 2016; 108: 415-425. https://doi.org/10.1016/j.neuropharm.2016.04.047

[205]

Shalev A, Cho D, Marmar CR. Neurobiology and treatment of posttraumatic stress disorder. Am J Psychiatry. 2024; 181(8): 705-719. https://doi.org/10.1176/appi.ajp.20240536

[206]

Schwabe L. Memory under stress: from adaptation to disorder. Biol Psychiatry. 2024; 97(4): 339-348. https://doi.org/10.1016/j.biopsych.2024.06.005

[207]

R B, J S, C D, et al. Fear extinction memory is negatively associated with REM sleep in insomnia disorder. Sleep. 2020; 43(7): 1-27. https://doi.org/10.1093/sleep/zsaa007

[208]

Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev. 2018; 41: 173-184. https://doi.org/10.1016/j.smrv.2018.03.001

[209]

Van Der Helm E, Yao J, Dutt S, Rao V, Saletin JM, Walker MP. REM sleep depotentiates amygdala activity to previous emotional experiences. Curr Biol. 2011; 21(23): 2029-2032. https://doi.org/10.1016/j.cub.2011.10.052

[210]

Kjaerby C, Andersen M, Hauglund N, et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci. 2022; 25(8): 1059-1070. https://doi.org/10.1038/s41593-022-01102-9

[211]

Mallick BN, Singh A. REM sleep loss increases brain excitability: role of noradrenalin and its mechanism of action. Sleep Med Rev. 2011; 15(3): 165-178. https://doi.org/10.1016/j.smrv.2010.11.001

[212]

Germain A, Buysse DJ, Nofzinger E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med Rev. 2008; 12(3): 185-195. https://doi.org/10.1016/j.smrv.2007.09.003

[213]

Alkalame L, Ogden J, Clark JW, Porcheret K, Risbrough VB, Drummond SPA. The relationship between REM sleep prior to analogue trauma and intrusive memories. Sleep. 2024; 47(September): 1-10. https://doi.org/10.1093/sleep/zsae203

[214]

Pawlyk AC, Morrison AR, Ross RJ, Brennan FX. Stress-induced changes in sleep in rodents: models and mechanisms. Neurosci Biobehav Rev. 2008; 32(1): 99-117. https://doi.org/10.1016/j.neubiorev.2007.06.001

[215]

Ursin R. Serotonin and sleep. Sleep Med Rev. 2002; 6(1): 55-67. https://doi.org/10.1053/smrv.2001.0174

[216]

Reich SG, Savitt JM. Parkinson’s disease. Med Clin. 2019; 103(2): 337-350. https://doi.org/10.1016/j.mcna.2018.10.014

[217]

Zhang Y, Ren R, Sanford LD, et al. Sleep in Parkinson’s disease: a systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev. 2020; 51:101281. https://doi.org/10.1016/j.smrv.2020.101281

[218]

Lima MMS. Sleep disturbances in Parkinson’s disease: the contribution of dopamine in REM sleep regulation. Sleep Med Rev. 2013; 17(5): 367-375. https://doi.org/10.1016/j.smrv.2012.10.006

[219]

Howell MJ, Schenck CH. Rapid eyemovement sleep behavior disorder and neurodegenerative disease. JAMA Neurol. 2015; 72(6): 707-712. https://doi.org/10.1001/jamaneurol.2014.4563

[220]

Stefani A, Högl B. Sleep in Parkinson’s disease. Neuropsychopharmacology. 2020; 45(1): 121-128. https://doi.org/10.1038/s41386-019-0448-y

[221]

Zahed H, Zuzuarregui JRP, Gilron R, Denison T, Starr PA, Little S. The neurophysiology of sleep in parkinson’s disease. Mov Disord. 2021; 36(7): 1526-1542. https://doi.org/10.1002/mds.28562

[222]

Zheng Y, Cai H, Wang X, et al. Erythrocytic α-synuclein species as biomarkers for isolated rapid eye movement sleep behavior disorder. Mov Disord. 2023; 38(12): 2315-2317. https://doi.org/10.1002/mds.29583

[223]

Taguchi T, Ikuno M, Hondo M, et al. α-synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020; 143(1): 249-265. https://doi.org/10.1093/brain/awz380

[224]

Shen Y, Yu WB, Shen B, et al. Propagated a-synucleinopathy recapitulates REM sleep behaviour disorder followed by parkinsonian phenotypes in mice. Brain. 2020; 143(11): 3374-3392. https://doi.org/10.1093/BRAIN/AWAA283

[225]

Iranzo A, Cochen DCV, Fantini ML, Pérez-Carbonell L, Trotti LM. Sleep and sleep disorders in people with Parkinson’s disease. Lancet Neurol. 2024; 23(9): 925-937. https://doi.org/10.1016/S1474-4422(24)00170-4

[226]

Venner A, Todd WD, Fraigne J, et al. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep. 2019; 40(5): 1-41. https://doi.org/10.1093/gerona/gly169

[227]

Carrarini C, Russo M, Dono F, et al. A stage-based approach to therapy in parkinson’s disease. Biomolecules. 2019; 9(8): 1-32. https://doi.org/10.3390/biom9080388

[228]

Schenck CH. REM sleep behaviour disorder (RBD): personal perspectives and research priorities. J Sleep Res. 2025; 34(2): 1-16. https://doi.org/10.1111/jsr.14228

[229]

Rotenberg VS. The competition between SWS and REM sleep as index of maladaptation to shift work. Homeost Health & Dis. 1991; 33(5): 235-238.

RIGHTS & PERMISSIONS

2025 The Author(s). Sleep Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Sleep Research Society.

AI Summary AI Mindmap
PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/