Decreased multidrug resistance protein 1 and increased platelet activation in obstructive sleep apnea syndrome

Cigdem Bayram Gurel , Engin Korkmaz , Suzan Adin Cinar , Gülsel Ayaz , Bulent Tutluoglu , Gunnur Deniz , Arzuhan Koç , Turgut Ulutin , Gonul Kanigur

Sleep Research ›› 2025, Vol. 2 ›› Issue (3) : 166 -176.

PDF
Sleep Research ›› 2025, Vol. 2 ›› Issue (3) : 166 -176. DOI: 10.1002/slp2.70009
RESEARCH ARTICLE

Decreased multidrug resistance protein 1 and increased platelet activation in obstructive sleep apnea syndrome

Author information +
History +
PDF

Abstract

Introduction: Obstructive sleep apnea syndrome (OSAS) is an inflammatory disease characterized by recurrent apnea and hypopnea. Multidrug resistance protein 1 (MRP1) is an anti-inflammatory protein that protects the cell from agents caused by oxidative stress. The aim of this study was to investigate the role of MRP1 in platelet function in OSAS.

Methods: According to the polysomnography results, 14 patients with simple snoring, 16 with mild OSAS, 14 with moderate OSAS, and 15 with severe OSAS were included in the study. Platelet aggregations were evaluated by an aggregometer. MRP1, CD62P (P-selectin), CD41b, and CD42b expressions were measured by a flow cytometer.

Results: Platelet aggregation levels were higher in the severe OSAS group than in the simple, mild, and moderate OSAS groups (p = 0.041). On the other hand, CD42b+/MRP1+ expression was lower in the severe OSAS group than in the simple, mild, and moderate OSAS groups (p = 0.002). MRP1 and CD42b expressions were consistent with this result (p = 0.013, p = 0.009, respectively). A positive correlation was found between apnea/hypopnea index and platelet aggregation (r = 0.289 p = 0.028) and a negative correlation was found between CD42b, CD42b+/MRP1+ (r = -0.419 p = 0.001, r = -0.357 p = 0.006, respectively).

Conclusion: Our findings suggest that high platelet activity and low MRP1 expression contribute to inflammation in OSAS and thus may be biomarkers.

Keywords

AHI / apnea / CD42b / MRP1 / OSAS / platelet aggregation / sleep

Cite this article

Download citation ▾
Cigdem Bayram Gurel, Engin Korkmaz, Suzan Adin Cinar, Gülsel Ayaz, Bulent Tutluoglu, Gunnur Deniz, Arzuhan Koç, Turgut Ulutin, Gonul Kanigur. Decreased multidrug resistance protein 1 and increased platelet activation in obstructive sleep apnea syndrome. Sleep Research, 2025, 2(3): 166-176 DOI:10.1002/slp2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guilleminault C, Tilkian A, Dement WC. The sleep apnea syndromes. Annu Rev Med. 1976; 27(1): 465-484. https://doi.org/10.1146/annurev.me.27.020176.002341

[2]

Kales A, Caldwell AB, Cadieux RJ, Vela-Bueno A, Ruch LG, Mayes SD. Severe obstructive sleep apnea--II: associated psychopathology and psychosocial consequences. J Chron Dis. 1985; 38(5): 427-434. https://doi.org/10.1016/0021-9681(85)90138-9

[3]

Akkanti B, Castriotta RJ, Sayana P, et al. Ventricular assist devices and sleep-disordered breathing. Sleep Med Rev. 2017; 35: 51-61. https://doi.org/10.1016/j.smrv.2016.08.002

[4]

Arnaud C, Bochaton T, Pepin JL, Belaidi E. Obstructive sleep apnoea and cardiovascular consequences: pathophysiological mechanisms. Arch Cardiovasc Dis. 2020; 113(5): 350-358. https://doi.org/10.1016/j.acvd.2020.01.003

[5]

Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993; 328(17): 1230-1235. https://doi.org/10.1056/nejm199304293281704

[6]

Gislason T, Benediktsdottir B, Bjornsson JK, Kjartansson G, Kjeld M, Kristbjarnarson H. Snoring, hypertension, and the sleep apnea syndrome. An epidemiologic survey of middle-aged women. Chest. 1993; 103(4): 1147-1151. https://doi.org/10.1378/chest.103.4.1147

[7]

Haimeur A, Conseil G, Deeley RG, Cole S. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab. 2004; 5(1): 21-53. https://doi.org/10.2174/1389200043489199

[8]

Zaman GJ, Versantvoort CH, Smit JJ, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res. 1993; 53(8): 1747-1750.

[9]

Burger H, Nooter K, Sonneveld P, Van Wingerden KE, Zaman GJR, Stoter G. High expression of the multidrug resistance-associated protein (MRP) in chronic and prolymphocytic leukaemia. Br J Haematol. 1994; 88(2): 348-356. https://doi.org/10.1111/j.1365-2141.1994.tb05030.x

[10]

Hider SL, Owen A, Hartkoorn R, et al. Down regulation of multidrug resistance protein-1 expression in patients with early rheumatoid arthritis exposed to methotrexate as a first disease-modifying antirheumatic drug. Ann Rheum Dis. 2006; 65(10): 1390-1393. https://doi.org/10.1136/ard.2005.049189

[11]

Mueller CF, Wassmann K, Widder JD, et al. Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation. 2008; 117(22): 2912-2918. https://doi.org/10.1161/circulationaha.107.747667

[12]

Blokzijl H, van Steenpaal A, Vander Borght S, et al. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. J Biol Chem. 2008; 283(51): 35630-35637.

[13]

Budulac SE, Postma DS, Hiemstra PS, et al. Multidrug resistance-associated protein-1 (MRP1) genetic variants, MRP1 protein levels and severity of COPD. Respir Res. 2010; 11(1):60. https://doi.org/10.1186/1465-9921-11-60

[14]

Chaouat A, Weitzenblum E, Krieger J, Ifoundza T, Oswald M, Kessler R. Association of chronic obstructive pulmonary disease and sleep apnea syndrome. Am J Respir Crit Care Med. 1995; 151(1): 82-86. https://doi.org/10.1164/ajrccm.151.1.7812577

[15]

Krieger AC, Anand R, Hernandez-Rosa E, et al. Increased platelet activation in sleep apnea subjects with intermittent hypoxemia. Sleep Breath. 2020; 24(4): 1537-1547. https://doi.org/10.1007/s11325-020-02021-4

[16]

Nurden AT. Platelet membrane glycoproteins: a historical review. Semin Thromb Hemost. 2014; 40(5): 577-584. https://doi.org/10.1055/s-0034-1383826

[17]

Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - complex interactions with bacteria. Front Immunol. 2015; 6:82. https://doi.org/10.3389/fimmu.2015.00082

[18]

Maruyama K, Morishita E, Sekiya A, et al. Plasma levels of platelet-derived microparticles in patients with obstructive sleep apnea syndrome. J Atheroscler Thromb. 2012; 19(1): 98-104. https://doi.org/10.5551/jat.8565

[19]

Sateia MJ. International classification of sleep disorders-third edition: highlights and modifications. Chest. 2014; 146(5): 1387-1394. https://doi.org/10.1378/chest.14-0970

[20]

Hudgel DW. Sleep apnea severity classification - revisited. Sleep. 2016; 39(5): 1165-1166. https://doi.org/10.5665/sleep.5776

[21]

Tutluoglu B, Gurel CB, Ozdas SB, et al. Platelet function and fibrinolytic activity in patients with bronchial asthma. Clin Appl Thromb Hemost. 2005; 11(1): 77-81. https://doi.org/10.1177/107602960501100109

[22]

Svobodova H, Stulc T, Kasalova Z, et al. The effect of rosiglitazone on the expression of thrombogenic markers on leukocytes in type 2 diabetes mellitus. Physiol Res / Acad Sci Bohemoslov. 2009; 58(5): 701-707. https://doi.org/10.33549/physiolres.931573

[23]

Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001; 104(13): 1533-1537. https://doi.org/10.1161/hc3801.095588

[24]

Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int. 2015; 64(1): 17-26. https://doi.org/10.1016/j.alit.2014.09.001

[25]

Liu T, Garofalo D, Feng C, et al. Platelet-driven leukotriene C4-mediated airway inflammation in mice is aspirin-sensitive and depends on T prostanoid receptors. J Immunol. 2015; 194(11): 5061-5068. https://doi.org/10.4049/jimmunol.1402959

[26]

Lorico A, Rappa G, Finch RA, et al. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res. 1997; 57(23): 5238-5242.

[27]

Wijnholds J, Evers R, van Leusden MR, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med. 1997; 3(11): 1275-1279. https://doi.org/10.1038/nm1197-1275

[28]

Yoshioka M, Sagara H, Takahashi F, et al. Role of multidrug resistance-associated protein 1 in the pathogenesis of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2009; 296(1): L30-L36. https://doi.org/10.1152/ajplung.00026.2008

[29]

Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999; 1461(2): 377-394. https://doi.org/10.1016/s0005-2736(99)00169-8

[30]

Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA. 2003; 100(16): 9244-9249. https://doi.org/10.1073/pnas.1033060100

[31]

van der Deen M, Timens W, Timmer-Bosscha H, et al. Reduced inflammatory response in cigarette smoke exposed Mrp1/Mdr1a/1b deficient mice. Respir Res. 2007; 8(1):49. https://doi.org/10.1186/1465-9921-8-49

[32]

Adelman B, Michelson AD, Loscalzo J, Greenberg J, Handin R. Plasmin effect on platelet glycoprotein Ib-von Willebrand factor interactions. Blood. 1985; 65(1): 32-40. https://doi.org/10.1182/blood.v65.1.32.bloodjournal65132

[33]

Cummings HE, Liu T, Feng C, et al. Cutting edge: leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. J Immunol. 2013; 191(12): 5807-5810. https://doi.org/10.4049/jimmunol.1302187

[34]

Ballatori N, Krance SM, Marchan R, Hammond CL. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med. 2009; 30(1-2): 13-28. https://doi.org/10.1016/j.mam.2008.08.004

[35]

Zhang W, St Clair D, Butterfield A, Vore M. Loss of Mrp1 potentiates doxorubicin-induced cytotoxicity in neonatal mouse cardiomyocytes and cardiac fibroblasts. Toxicol Sci. 2016; 151(1): 44-56. https://doi.org/10.1093/toxsci/kfw021

[36]

Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993; 103(6): 1763-1768. https://doi.org/10.1378/chest.103.6.1763

[37]

Jennum P, Wildschiodtz G, Christensen NJ, Schwartz T. Blood pressure, catecholamines, and pancreatic polypeptide in obstructive sleep apnea with and without nasal continuous positive airway pressure (nCPAP) treatment. Am J Hypertens. 1989; 2(11 Pt 1): 847-852. https://doi.org/10.1093/ajh/2.11.847

[38]

Celen YT, Peker Y. Cardiovascular consequences of sleep apnea: I -epidemiology. Anadolu Kardiyol Derg AKD = Anatol J Cardiol. 2010; 10(1): 75-80.

[39]

Geiser T, Buck F, Meyer BJ, Bassetti C, Haeberli A, Gugger M. In vivo platelet activation is increased during sleep in patients with obstructive sleep apnea syndrome. Respir Int Rev Thorac Dis. 2002; 69(3): 229-234. https://doi.org/10.1159/000063625

[40]

Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003; 170(2): 191-203. https://doi.org/10.1016/s0021-9150(03)00097-2

[41]

Jensen MK, de Nully Brown P, Lund BV, Nielsen OJ, Hasselbalch HC. Increased platelet activation and abnormal membrane glycoprotein content and redistribution in myeloproliferative disorders. Br J Haematol. 2000; 110(1): 116-124. https://doi.org/10.1046/j.1365-2141.2000.02030.x

[42]

Rahangdale S, Yeh SY, Novack V, et al. The influence of intermittent hypoxemia on platelet activation in obese patients with obstructive sleep apnea. J Clin Sleep Med. 2011; 7(2): 172-178. https://doi.org/10.5664/jcsm.28105

[43]

Metcalfe C, Ramasubramoni A, Pula G, Harper MT, Mundell SJ, Coxon CH. Thioredoxin inhibitors attenuate platelet function and thrombus formation. PLoS One. 2016; 11(10):e0163006. https://doi.org/10.1371/journal.pone.0163006

[44]

Michelson AD, Barnard MR. Thrombin-induced changes in platelet membrane glycoproteins Ib, IX, and IIb-IIIa complex. Blood. 1987; 70(5): 1673-1678. https://doi.org/10.1182/blood.v70.5.1673.1673

[45]

Michelson AD, Ellis PA, Barnard MR, Matic G, Viles A, Kestin A. Downregulation of the platelet surface glycoprotein Ib-IX complex in whole blood stimulated by thrombin, adenosine diphosphate, or an in vivo wound. Blood. 1991; 77(4): 770-779. https://doi.org/10.1182/blood.v77.4.770.770

[46]

LaRosa CA, Rohrer MJ, Benoit SE, Barnard M, Michelson A. Neutrophil cathepsin G modulates the platelet surface expression of the glycoprotein (GP) Ib-IX complex by proteolysis of the von Willebrand factor binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex. Blood. 1994; 84(1): 158-168. https://doi.org/10.1182/blood.v84.1.158.158

[47]

Bergmeier W, Piffath CL, Cheng G, et al. Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates GPIbalpha shedding from platelets in vitro and in vivo. Circ Res. 2004; 95(7): 677-683. https://doi.org/10.1161/01.res.0000143899.73453.11

[48]

Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation. 1993; 88(4 Pt 1): 1502-1511. https://doi.org/10.1161/01.cir.88.4.1502

[49]

Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD. Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol. 2007; 50(19): 1822-1834. https://doi.org/10.1016/j.jacc.2007.07.051

[50]

Sanner BM, Konermann M, Tepel M, Groetz J, Mummenhoff C, Zidek W. Platelet function in patients with obstructive sleep apnoea syndrome. Eur Respir J. 2000; 16(4): 648-652. https://doi.org/10.1034/j.1399-3003.2000.16d14.x

[51]

Atan D, Sazak Kundi FC, Ozcan KM, et al. [The relationship between platelet count and mean platelet volume with obstructive sleep apnea syndrome]. Kulak Burun Bogaz Ihtis Derg = J Ear, Nose, Throat. 2015; 25(5): 289-294.

[52]

Peled N, Shitrit D, Bendayan D, Peled E, Kramer MR. Association of elevated levels of vascular endothelial growth factor in obstructive sleep apnea syndrome with patient age rather than with obstructive sleep apnea syndrome severity. Respir Int Rev Thorac Dis. 2007; 74(1): 50-55. https://doi.org/10.1159/000095675

RIGHTS & PERMISSIONS

2025 The Author(s). Sleep Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Sleep Research Society.

AI Summary AI Mindmap
PDF

34

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/