Rapid eye movement sleep promotes fear conditioning-induced dendritic spine elimination of layer 2/3 pyramidal neurons in the mouse motor cortex

Zhongyuan Li , Feilong Zhang , Yanmei Zhou , Manxia Lin , Baojun Zhang , Xujun Wu , Qian Qiao , Wen-Biao Gan

Sleep Research ›› 2025, Vol. 2 ›› Issue (2) : 99 -113.

PDF
Sleep Research ›› 2025, Vol. 2 ›› Issue (2) : 99 -113. DOI: 10.1002/slp2.70008
RESEARCH ARTICLE

Rapid eye movement sleep promotes fear conditioning-induced dendritic spine elimination of layer 2/3 pyramidal neurons in the mouse motor cortex

Author information +
History +
PDF

Abstract

Background: Previous studies have shown that rapid eye movement (REM) sleep is important for promoting dendritic spine elimination after fear learning as well as for selectively maintaining new dendritic spines after motor learning. These REM sleep-dependent synaptic changes were measured on apical dendrites of layer 5 pyramidal neurons. Whether and how REM sleep affects synaptic structural plasticity on other cell types in the cortex remain unclear.

Methods: Used transcranial two-photon microscopy, we examined the effects of auditory cued fear conditioning (FC) and REM sleep on changes of dendritic spines of layer 2/3 pyramidal neurons in the mouse primary motor cortex.

Results: Auditory cued FC induced significantly higher elimination and formation of dendritic spines of layer 2/3 pyramidal neurons in the primary motor cortex over 4 hours. The degree of spine elimination rate was correlated with the freezing response during the 24 hour-recall test. Notably, REM sleep deprivation after FC prevented dendritic spine elimination, but not formation, of layer 2/3 pyramidal neurons. Furthermore, Ca2+ activity of layer 2/3 pyramidal neurons significantly increased during REM sleep, and that optogenetic blockade of Ca2+-CaMKII signaling during REM sleep prevented FC-induced spine elimination.

Conclusion: These findings reveal an important role of REM sleep in FC-induced pruning of dendritic spines of layer 2/3 pyramidal neurons in the motor cortex.

Keywords

Ca2+activity / fear conditioning / motor cortex / REM sleep / synaptic dynamics

Cite this article

Download citation ▾
Zhongyuan Li, Feilong Zhang, Yanmei Zhou, Manxia Lin, Baojun Zhang, Xujun Wu, Qian Qiao, Wen-Biao Gan. Rapid eye movement sleep promotes fear conditioning-induced dendritic spine elimination of layer 2/3 pyramidal neurons in the mouse motor cortex. Sleep Research, 2025, 2(2): 99-113 DOI:10.1002/slp2.70008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science (New York, NY). 1953; 118(3062): 273-274. https://doi.org/10.1126/science.118.3062.273

[2]

Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Science (New York, NY). 1966; 152(3722): 604-619. https://doi.org/10.1126/science.152.3722.604

[3]

Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. Neuronal firing rate homeostasis is inhibited by sleep and promoted by Wake. Cell. 2016; 165(1): 180-191. https://doi.org/10.1016/j.cell.2016.01.046

[4]

Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014; 81(1): 12-34. https://doi.org/10.1016/j.neuron.2013.12.025

[5]

Gisabella B, Scammell T, Bandaru SS, Saper CB. Regulation of hippocampal dendritic spines following sleep deprivation. J Comp Neurol. 2020; 528(3): 380-388. https://doi.org/10.1002/cne.24764

[6]

Adler A, Lai CSW, Yang G, Geron E, Bai Y, Gan WB. Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc Natl Acad Sci USA. 2021; 118(50). https://doi.org/10.1073/pnas.2114856118

[7]

Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006; 10(1): 49-62. https://doi.org/10.1016/j.smrv.2005.05.002

[8]

Suppermpool A, Lyons DG, Broom E, Rihel J. Sleep pressure modulates single-neuron synapse number in zebrafish. Nature. 2024; 629(8012): 639-645. https://doi.org/10.1038/s41586-024-07367-3

[9]

Zhou Y, Lai CSW, Bai Y, et al. REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun. 2020; 11(1):4819. https://doi.org/10.1038/s41467-020-18592-5

[10]

Yang G, Lai CS, Cichon J, Ma L, Li W, Gan WB. Sleep promotes branch-specific formation of dendritic spines after learning. Science (New York, NY). 2014; 344(6188): 1173-1178. https://doi.org/10.1126/science.1249098

[11]

Li W, Ma L, Yang G, Gan WB. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci. 2017; 20(3): 427-437. https://doi.org/10.1038/nn.4479

[12]

Luo J, Phan TX, Yang Y, Garelick MG, Storm DR. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation. J Neurosci. 2013; 33(15): 6460-6468. https://doi.org/10.1523/jneurosci.5018-12.2013

[13]

Ribeiro S, Goyal V, Mello CV, Pavlides C. Brain gene expression during REM sleep depends on prior waking experience. Learn Mem (Cold Spring Harbor, NY). 1999; 6(5): 500-508. https://doi.org/10.1101/lm.6.5.500

[14]

Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci. 2002; 22(24): 10914-10923. https://doi.org/10.1523/jneurosci.22-24-10914.2002

[15]

Burnouf S, Martire A, Derisbourg M, et al. NMDA receptor dysfunction contributes to impaired brain-derived neurotrophic factor-induced facilitation of hippocampal synaptic transmission in a Tau transgenic model. Aging Cell. 2013; 12(1): 11-23. https://doi.org/10.1111/acel.12018

[16]

Ishikawa A, Kanayama Y, Matsumura H, Tsuchimochi H, Ishida Y, Nakamura S. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci. 2006; 24(1): 243-248. https://doi.org/10.1111/j.1460-9568.2006.04874.x

[17]

Shaffery JP, Sinton CM, Bissette G, Roffwarg HP, Marks GA. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats. Neuroscience. 2002; 110(3): 431-443. https://doi.org/10.1016/s0306-4522(01)00589-9

[18]

Ravassard P, Hamieh AM, Joseph MA, et al. REM sleep-dependent bidirectional regulation of hippocampal-based emotional memory and LTP. Cereb Cortex (New York, NY : 1991). 2016; 26(4): 1488-1500. https://doi.org/10.1093/cercor/bhu310

[19]

Feldmeyer D, Lübke J, Sakmann B. Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol. 2006; 575(Pt 2): 583-602. https://doi.org/10.1113/jphysiol.2006.105106

[20]

Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GM. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J Neurosci. 2013; 33(2): 748-760. https://doi.org/10.1523/jneurosci.4338-12.2013

[21]

Kiritani T, Wickersham IR, Seung HS, Shepherd GM. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J Neurosci. 2012; 32(14): 4992-5001. https://doi.org/10.1523/jneurosci.4759-11.2012

[22]

Tsubo Y, Takada M, Reyes AD, Fukai T. Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci. 2007; 25(11): 3429-3441. https://doi.org/10.1111/j.1460-9568.2007.05579.x

[23]

Ma L, Qiao Q, Tsai JW, Yang G, Li W, Gan WB. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex. Dev Neurobiol. 2016; 76(3): 277-286. https://doi.org/10.1002/dneu.22313

[24]

Qiao Q, Wu C, Ma L, et al. Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines. Cell Rep. 2022; 40(7):111229. https://doi.org/10.1016/j.celrep.2022.111229

[25]

Xu Z, Geron E, Pérez-Cuesta LM, Bai Y, Gan WB. Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites. Nat Commun. 2023; 14(1):503. https://doi.org/10.1038/s41467-023-35805-9

[26]

Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002; 420(6917): 812-816. https://doi.org/10.1038/nature01276

[27]

Cichon J, Gan WB. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature. 2015; 520(7546): 180-185. https://doi.org/10.1038/nature14251

[28]

Pnevmatikakis EA, Giovannucci A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J Neurosci Methods. 2017; 291: 83-94. https://doi.org/10.1016/j.jneumeth.2017.07.031

[29]

Shimogori T, Ogawa M. Gene application with in utero electroporation in mouse embryonic brain. Dev Growth Differ. 2008; 50(6): 499-506. https://doi.org/10.1111/j.1440-169X.2008.01045.x

[30]

Murakoshi H, Shin ME, Parra-Bueno P, Szatmari EM, Shibata ACE, Yasuda R. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron. 2017; 94(1): 37-47.e5. https://doi.org/10.1016/j.neuron.2017.02.036

[31]

Lai CSW, Adler A, Gan WB. Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex. Proc Natl Acad Sci USA. 2018; 115(37): 9306-9311. https://doi.org/10.1073/pnas.1801504115

[32]

Yang Y, Liu DQ, Huang W, et al. Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat Neurosci. 2016; 19(10): 1348-1355. https://doi.org/10.1038/nn.4370

[33]

Lai CS, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012; 483(7387): 87-91. https://doi.org/10.1038/nature10792

[34]

Xu Z, Adler A, Li H, et al. Fear conditioning and extinction induce opposing changes in dendritic spine remodeling and somatic activity of layer 5 pyramidal neurons in the mouse motor cortex. Sci Rep. 2019; 9(1):4619. https://doi.org/10.1038/s41598-019-40549-y

[35]

Ziv NE, Smith SJ. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron. 1996; 17(1): 91-102. https://doi.org/10.1016/s0896-6273(00)80283-4

[36]

Portera-Cailliau C, Pan DT, Yuste R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci. 2003; 23(18): 7129-7142. https://doi.org/10.1523/jneurosci.23-18-07129.2003

[37]

Geiszler PC, Barron MR, Pardon MC. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience. 2016; 329: 98-111. https://doi.org/10.1016/j.neuroscience.2016.05.004

[38]

Jain A, Nakahata Y, Pancani T, et al. Dendritic, delayed, stochastic CaMKII activation in behavioural time scale plasticity. Nature. 2024; 635(8037): 151-159. https://doi.org/10.1038/s41586-024-08021-8

[39]

Lamprecht R, LeDoux J. Structural plasticity and memory. Nat Rev Neurosci. 2004; 5(1): 45-54. https://doi.org/10.1038/nrn1301

[40]

Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science (New York, NY). 2006; 313(5790): 1093-1097. https://doi.org/10.1126/science.1128134

[41]

Girardeau G, Lopes-Dos-Santos V. Brain neural patterns and the memory function of sleep. Science (New York, NY). 2021; 374(6567): 560-564. https://doi.org/10.1126/science.abi8370

[42]

Dong Y, Li J, Zhou M, Du Y, Liu D. Cortical regulation of two-stage rapid eye movement sleep. Nat Neurosci. 2022; 25(12): 1675-1682. https://doi.org/10.1038/s41593-022-01195-2

[43]

Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci. 2022; 23(11): 666-682. https://doi.org/10.1038/s41583-022-00624-2

[44]

Shonesy BC, Jalan-Sakrikar N, Cavener VS, Colbran RJ. CaMKII: a molecular substrate for synaptic plasticity and memory. Prog Mol Biol Transl Sci. 2014; 122: 61-87. https://doi.org/10.1016/b978-0-12-420170-5.00003-9

[45]

Giese KP. The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation. Neuropharmacology. 2021; 193:108616. https://doi.org/10.1016/j.neuropharm.2021.108616

[46]

Hofer SB, Mrsic-Flogel TD, Bonhoeffer T, Hübener M. Experience leaves a lasting structural trace in cortical circuits. Nature. 2009; 457(7227): 313-317. https://doi.org/10.1038/nature07487

[47]

Sun L, Zhou H, Cichon J, Yang G. Experience and sleep-dependent synaptic plasticity: from structure to activity. Phil Trans Roy Soc Lond B Biol Sci. 2020; 375(1799):20190234. https://doi.org/10.1098/rstb.2019.0234

[48]

Penzo MA, Moscarello JM. From aversive associations to defensive programs: experience-dependent synaptic modifications in the central amygdala. Trends Neurosci. 2023; 46(9): 701-711. https://doi.org/10.1016/j.tins.2023.06.006

[49]

Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, NY). 1997; 275(5297): 213-215. https://doi.org/10.1126/science.275.5297.213

[50]

Hooks BM, Chen C. Circuitry underlying experience-dependent plasticity in the mouse visual system. Neuron. 2020; 106(1): 21-36. https://doi.org/10.1016/j.neuron.2020.01.031

[51]

Xu T, Yu X, Perlik AJ, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009; 462(7275): 915-919. https://doi.org/10.1038/nature08389

[52]

Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009; 462(7275): 920-924. https://doi.org/10.1038/nature08577

[53]

Zhou Y, Lai B, Gan WB. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci Rep. 2017; 7(1):4977. https://doi.org/10.1038/s41598-017-05337-6

[54]

Peters AJ, Liu H, Komiyama T. Learning in the rodent motor cortex. Annu Rev Neurosci. 2017; 40(1): 77-97. https://doi.org/10.1146/annurev-neuro-072116-031407

[55]

Peters AJ, Lee J, Hedrick NG, O'Neil K, Komiyama T. Reorganization of corticospinal output during motor learning. Nat Neurosci. 2017; 20(8): 1133-1141. https://doi.org/10.1038/nn.4596

[56]

Goldstein AN, Walker MP. The role of sleep in emotional brain function. Annu Rev Clin Psychol. 2014; 10(1): 679-708. https://doi.org/10.1146/annurev-clinpsy-032813-153716

[57]

Spoormaker VI, Schröter MS, Andrade KC, et al. Effects of rapid eye movement sleep deprivation on fear extinction recall and prediction error signaling. Hum Brain Mapp. 2012; 33(10): 2362-2376. https://doi.org/10.1002/hbm.21369

[58]

Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science (New York, NY). 2016; 352(6287): 812-816. https://doi.org/10.1126/science.aad5252

[59]

Tamaki M, Berard AV, Barnes-Diana T, Siegel J, Watanabe T, Sasaki Y. Reward does not facilitate visual perceptual learning until sleep occurs. Proc Natl Acad Sci USA. 2020; 117(2): 959-968. https://doi.org/10.1073/pnas.1913079117

[60]

Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009; 458(7236): 299-304. https://doi.org/10.1038/nature07842

[61]

Shibata ACE, Ueda HH, Eto K, et al. Photoactivatable CaMKII induces synaptic plasticity in single synapses. Nat Commun. 2021; 12(1):751. https://doi.org/10.1038/s41467-021-21025-6

[62]

Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci. 2012; 13(3): 169-182. https://doi.org/10.1038/nrn3192

[63]

Opazo P, Labrecque S, Tigaret CM, et al. CaMKII triggers the diffusional trapping of surface AMPARs through phosphorylation of stargazin. Neuron. 2010; 67(2): 239-252. https://doi.org/10.1016/j.neuron.2010.06.007

[64]

Ma H, Groth RD, Cohen SM, et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell. 2014; 159(2): 281-294. https://doi.org/10.1016/j.cell.2014.09.019

[65]

Yan X, Liu J, Ye Z, et al. CaMKII-mediated CREB phosphorylation is involved in Ca2+-induced BDNF mRNA transcription and neurite outgrowth promoted by electrical stimulation. PLoS One. 2016; 11(9):e0162784. https://doi.org/10.1371/journal.pone.0162784

[66]

Dumoulin MC, Aton SJ, Watson AJ, Renouard L, Coleman T, Frank MG. Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cerebr Cortex (New York, NY: 1991). 2015; 25(2): 507-515. https://doi.org/10.1093/cercor/bht250

[67]

Dumoulin BMC, Aton SJ, Seibt J, Renouard L, Coleman T, Frank MG. Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci Adv. 2015; 1(6):e1500105. https://doi.org/10.1126/sciadv.1500105

RIGHTS & PERMISSIONS

2025 The Author(s). Sleep Research published by John Wiley & Sons Australia, Ltd on behalf of Chinese Sleep Research Society.

AI Summary AI Mindmap
PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/