Constructing String-Cage Structure of α-MnO2@CoS2 Photoelectrocatalyst for Efficient Detoxification Sulfonamides Wastewater

Hongchao Ma , Yan Chen , Huizhen Jin , Xinyue Wang , Guowen Wang , Yinghuan Fu , Pengyuan Wang , Vadivel Subramaniam , Krishnamoorthy Ramachandran , Xinghui Liu

Science for Energy and Environment ›› 2025, Vol. 2 ›› Issue (2) : 6

PDF (4519KB)
Science for Energy and Environment ›› 2025, Vol. 2 ›› Issue (2) :6 DOI: 10.53941/see.2025.100006
Article
research-article

Constructing String-Cage Structure of α-MnO2@CoS2 Photoelectrocatalyst for Efficient Detoxification Sulfonamides Wastewater

Author information +
History +
PDF (4519KB)

Abstract

Constructing high-efficiency heterostructured photocatalysts for antibiotic degradation is critical and challenging. Herein, a “pearl necklace” α-MnO2@CoS2 photoelectrode was prepared via a continuous hydrothermal process. The as-obtained photoelectrode comprised overlong α-MnO2 nanowires (as leading wire) and CoS2 nanocages (as decorations) derived from ZIF-67 precursor. The contrivable α-MnO2@CoS2 photoelectrode exhibited lower charge transfer resistance and higher carrier separation efficiency than single α-MnO2. The α-MnO2@CoS2 provided a heterostructured interface with fast carrier transfer, where α-MnO2 nanowire played the carrier transfer channel, and the CoS2 “nanocages” can effectively increase the contact area between the catalyst and the pollutants. Meanwhile, the stable p-n junction with the internal electric field can be formed in the synthesized α-MnO2@CoS2 composite to avoid the destruction of heterogeneous junctions and thus maintain stability. As a result, the α-MnO2@CoS2-0.2 had the highest PEC efficiency with a degradation rate of 98.95% for sulfonamides (SMX) within 50 min among prepared catalysts. The charge density difference of α-MnO2@CoS2 was performed to investigate the strong interaction between α-MnO2 and CoS2. This study provides insights into the construction of nanomaterial structures and their applicability to photocatalytic degradation of target pollutants, which can be expanded for future cost-effective water purification applications.

Keywords

α-MnO2 / CoS2 / photoelectrocatalysis / sulfamethoxazole / p-n heterojunction

Cite this article

Download citation ▾
Hongchao Ma, Yan Chen, Huizhen Jin, Xinyue Wang, Guowen Wang, Yinghuan Fu, Pengyuan Wang, Vadivel Subramaniam, Krishnamoorthy Ramachandran, Xinghui Liu. Constructing String-Cage Structure of α-MnO2@CoS2 Photoelectrocatalyst for Efficient Detoxification Sulfonamides Wastewater. Science for Energy and Environment, 2025, 2(2): 6 DOI:10.53941/see.2025.100006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shang K.; Morent R.; Wang N.; Wang Y.; Peng B.; Jiang N.; Lu N.; Li J. Degradation of sulfamethoxazole (SMX) by water falling film DBD Plasma/Persulfate: Reactive species identification and their role in SMX degradation. Chem. Eng. J. 2022, 431, 133916. https://doi.org/10.1016/j.cej.2021.133916.

[2]

Fan X.; Zhang Z.; Li X.; Liu Y.; Cao S.; Geng W.; Wang Y.; Zhang X. Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. Bioresour. Technol. 2024, 402, 130801. https://doi.org/10.1016/j.biortech.2024.130801.

[3]

Xue Y.; Kamali M.; Aminabhavi T.M.; Appels L.; Dewil R. Tailoring the surface functional groups of biochar for enhanced adsorption and degradation of pharmaceutically active compounds. Chem. Eng. J. 2024, 491, 152037. https://doi.org/10.1016/j.cej.2024.152037

[4]

Wang C.; Xing W.; Wu Y.; Li Y.; Yan Y.; Zhu J. In-situ synthesis of CNT/UiO-66-NH2-based molecularly imprinted nanocomposite membranes for selective recognition and separation of sulfamethoxazole: A synergistic promotion system. Surf. Interfaces 2022, 31, 101986. https://doi.org/10.1016/j.surfin.2022.101986.

[5]

Xu J.; Xu W.; Wang D.; Sang G.; Yang X. Evaluation of enhanced coagulation coupled with magnetic ion exchange (MIEX) in natural organic matter and sulfamethoxazole removals: The role of Al-based coagulant characteristic. Sep. Purif. Technol. 2016, 167, 70-78. https://doi.org/10.1016/j.seppur.2016.05.007.

[6]

Zhao C.; Duan X.; Liu C.; Huang H.; Wu M.; Zhang X.; Chen Y. Metabolite Cross-Feeding Promoting NADH Production and Electron Transfer during Efficient SMX Biodegradation by a Denitrifier and S. oneidensis MR-1 in the Presence of Nitrate. Environ. Sci. Technol. 2023, 57, 18306-18316. https://doi.org/10.1021/acs.est.2c09341.

[7]

Zhu E.; Yuan D.; Wang Z.; Zhang Q.; Tang S. Insight into the activation mechanism of peracetic acid by molybdenum carbide for sulfamethoxazole decomposition. Chem. Eng. J. 2023, 474, 145824. https://doi.org/10.1016/j.cej.2023.145824.

[8]

Peng Y.; Xie G.; Shao P.; Ren W.; Li M.; Hu Y.; Yang L.; Shi H.; Luo X. A comparison of SMX degradation by persulfate activated with different nanocarbons: Kinetics, transformation pathways, and toxicity. Appl. Catal. B Environ. 2022, 310, 121345. https://doi.org/10.1016/j.apcatb.2022.121345.

[9]

Jia Y.; Li H.; Duan L.; Gao Q.; Zhang H.; Li S.; Li M. Activation of persulfate by β-PDI/MIL-101(Fe) photocatalyst under visible light toward efficient degradation of sulfamethoxazole. Chem. Eng. J. 2024, 481, 148588. https://doi.org/10.1016/j.cej.2024.148588.

[10]

Son A.; Lee J.; Lee C.; Cho K.; Lee J.; Hong S.W. Persulfate enhanced photoelectrochemical oxidation of organic pollutants using self-doped TiO2 nanotube arrays: Effect of operating parameters and water matrix. Water Res. 2021, 191, 116803. https://doi.org/10.1016/j.watres.2021.116803.

[11]

Li S.; Zhang G.; Meng D.; Yang F. Photoelectrocatalytic activation of sulfate for sulfamethoxazole degradation and simultaneous H2 production by bifunctional N, P co-doped black-blue TiO2 nanotube array electrode. Chem. Eng. J. 2024, 485, 149828. https://doi.org/10.1016/j.cej.2024.149828.

[12]

Qian R.F.; Zong H.X.; Schneider J.; Zhou G.D.; Zhao T.; Li Y.L.; Yang J.; Bahnemann D.W.; Pan J.H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78-90. https://doi.org/10.1016/j.cattod.2018.10.053.

[13]

Zhao Y.; Fang X.; Chen L.; Zhu J.F.; Zheng Y.H. Improved proton adsorption and charge separation on cadmium sulfides for photocatalytic hydrogen production. Energy Technol. 2022, 10, 2200300. https://doi.org/10.1002/ente.202200300.

[14]

Lee G.J.; Wu J.J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technol. 2017, 318, 8-22. https://doi.org/10.1016/j.powtec.2017.05.022.

[15]

Muthukumar R.; Balaji G.; Vadivel S. The charge transfer pathway of g-C3N4 decorated Au/Ni3(VO4)2 composites for highly efficient photocatalytic hydrogen evolution. Colloids Surf. A 2022, 655, 130183. https://doi.org/10.1016/j.colsurfa.2022.130183.

[16]

Li J.W.; Yang X.Q.; Ma C.R.; Lei Y.; Cheng Z.Y.; Rui Z.B. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Appl. Catal. B Environ. 2021, 291, 120053. https://doi.org/10.1016/j.apcatb.2021.120053.

[17]

Chi Z.; Zhao J.; Zhang Y.; Yu H.; Yu H. Coral-like WO3/BiVO4 photoanode constructed via morphology and facet engineering for antibiotic wastewater detoxification and hydrogen recovery. Chem. Eng. J. 2022, 428, 131817. https://doi.org/10.1016/j.cej.2021.131817.

[18]

Thamilselvan A.; Dang V.; Doong R. Ni-Co bimetallic decorated dodecahedral ZIF as an efficient catalyst for photoelectrochemical degradation of sulfamethoxazole coupled with hydrogen production. Sci. Total Environ. 2023, 873, 162208. https://doi.org/10.1016/j.scitotenv.2023.162208.

[19]

Wu S.; Hu Y. A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics. Chem. Eng. J. 2021, 409, 127739. https://doi.org/10.1016/j.cej.2020.127739.

[20]

Zheng Z.; Zhang Z.; Wong K.; Lung C.; Khan M.; He J.; Kumar A.; Lo I. Facilitating peroxymonosulfate activation for effective antibiotics degradation from drinking water by photoelectrocatalytic system using MoS2 embedded carbon substrate. Chem. Eng. J. 2023, 452, 139591. https://doi.org/10.1016/j.cej.2022.139591.

[21]

Mirzaei A.; Eddah M.; Roualdes S.; Ma D.; Chaker M. Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chem. Eng. J. 2021, 422, 130507. https://doi.org/10.1016/j.cej.2021.130507.

[22]

Balakrishnan A.; Appunni S.; Chinthala M.; Vo D.N. Biopolymer-supported TiO2 as a sustainable photocatalyst for wastewater treatment: a review. Environ. Chem. Lett. 2022, 20, 3071-3098. https://doi.org/10.1007/s10311-022-01443-8.

[23]

Zhang S.; Yi J.; Chen J.; Yin Z.; Tang T.; Wei W.; Cao S.; Xu H. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. Chem. Eng. J. 2020, 380, 122583. https://doi.org/10.1016/j.cej.2019.122583.

[24]

Jing Y.; Fan A.; Guo J.; Shen T.; Yuan S.; Chu Y.Synthesis of an ultrathin MnO2 nanosheet-coated Bi2WO6 nanosheet as a heterojunction photocatalyst with enhanced photocatalytic activity. Nano-Micro Lett. 2022, 429, 132193. https://doi.org/10.1016/j.cej.2021.132193.

[25]

Barbosa M.L.; Costa M.J.S.; Lima A.E.B.; Batista A.M.; Longo E.; Cavalcante L.S.; Santos R.S. Anionic and cationic dyes removal by degradation via photoelectrocatalysis using a WO3/CuWO4 heterojunction film as a photoanode. Nano-Struct. Nano-Objects 2023, 35, 100993. https://doi.org/10.1016/j.nanoso.2023.100993.

[26]

Gómez E.; Cestaro R.; Philippe L.; Serrà A. Electrodeposition of nanostructured Bi2MoO6@Bi2MoO6-x homojunction films for the enhanced visible-light-driven photocatalytic degradation of antibiotics. Appl. Catal. B Environ. 2022, 317, 121703. https://doi.org/10.1016/j.apcatb.2022.121703.

[27]

Liu Z.; Tian J.; Yu C.; Fan Q.; Liu X. Solvothermal fabrication of Bi2MoO6 nanocrystals with tunable oxygen vacancies and excellent photocatalytic oxidation performance in quinoline production and antibiotics degradation. Chin. J. Catal. 2022, 43, 472-484. https://doi.org/10.1016/S1872-2067(21)63876-7.

[28]

Wang Z.M.; Wang Z.H.; Li W.; Lan Y.Q.; Chen C. Performance comparison and mechanism investigation of Co3O4-modified different crystallographic MnO2 (α β γ and δ) as an activator of peroxymonosulfate (PMS) for sulfisoxazole degradation. Chem. Eng. J. 2022, 427, 130888. https://doi.org/10.1016/j.cej.2021.130888.

[29]

Li H.J.; Chen Y.; Liu X.H.; Sun D.D.; Wang P.Y.; Wang G.W.; Zhang X.X.; Ma H.C. A type-II α-MnO2@Co3O4 architecture with superior photoelectrocatalytic performance toward water purification. Surf. Interfaces 2023, 39, 102901. https://doi.org/10.1016/j.surfin.2023.102901.

[30]

Dang V.; Annadurai T.; Khedulkar A.P.; Lin J.; Adorna J.; Yu W.; Pandit B.; Huynh T.; Doong R. S-scheme N-doped carbon dots anchored g-C3N4/Fe2O3 shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting. Appl. Catal. B Environ. 2023, 320, 121928. https://doi.org/10.1016/j.apcatb.2022.121928.

[31]

Leng H.; Li Z.; Li W.; Lv Z.; Guo J.; You H.; Jia Y.; Zhang G.; Wang L. Synergy of dual photoelectrodes for simultaneous antibiotic degradation and CO2 reduction by Z-scheme PEC system. Sep. Purif. Technol. 2024, 338, 126504. https://doi.org/10.1016/j.seppur.2024.126504.

[32]

Liu J.; Li J.; Li Y.; Guo J.; Xu S.; Zhang R.; Shao M. Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode. Appl. Catal. B Environ. 2020, 278, 119268. https://doi.org/10.1016/j.apcatb.2020.119268.

[33]

Nguyen T.; Huang C.P.; Doong R.; Chen C.; Dong C. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chem. Eng. J. 2020, 384, 123383. https://doi.org/10.1016/j.cej.2019.123383.

[34]

Jia L.; Li F.; Yang C.; Yang X.; Kou B.; Xing Y.; Peng J.; Ni G.; Cao Z.; Zhang S.; et al. Direct Z-Scheme Heterojunction α-MnO2/BiOI with Oxygen-Rich Vacancies Enhanced Photoelectrocatalytic Degradation of Organic Pollutants under Visible Light. Catalysts 2022, 12, 1596. https://doi.org/10.3390/catal12121596.

[35]

Guan C.; Liu X.M.; Ren W.N.; Li X.; Cheng C.W.; Wang J. Rational design of metalorganic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. https://doi.org/10.1002/aenm.201602391.

[36]

Xiao F.; Guo R.; He X.; Chen H.; Fang W.; Li W.; Wang H.; Sun Z.; Tian P.; Zhao L. Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation. Int. J. Hydrogen Energy 2021, 46, 7954-7963. https://doi.org/10.1016/j.ijhydene.2020.12.023.

[37]

Dutta R.; Shrivastav R.; Srivastava M.; Verma A.; Saxena S.; Biswas N.; Satsangi V.; Dass S. MOFs in photoelectrochemical water splitting: New horizons and challenges. Int. J. Hydrogen Energy 2022, 47, 5192-5210. https://doi.org/10.1016/j.ijhydene.2021.11.185.

[38]

Toe C.; Zhou S.; Michael G.; Lu X.; Ng Y.; Amal R. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. J. Mater. Chem. A 2021, 9, 20277-20319. https://doi.org/10.1039/D1TA05407D.

[39]

Li X.C.; Wang J.W.; Xia J.W.; Fang Y.X.; Hou Y.D.; Fu X.Z.; Shalom M.; Wang X.C. One-Pot Synthesis of CoS2 Merged in Polymeric Carbon Nitride Films for Photoelectrochemical Water Splitting. ChemSusChem 2022, 15, e202200330. https://doi.org/10.1002/cssc.202200330.

[40]

Zhang L.; Feng L.; Zhuang X.; Tang P.; Chen G.; Wang H. A visible-light-driven photoelectrochemical sensor for the sensitive and selective detection of chlorpyrifos via CoS2 quantum dots/CdS nanowires nanocomposites with 0D/1D heterostructure. Chem. Eng. J. 2023, 476, 146770. https://doi.org/10.1016/j.cej.2023.146770.

[41]

Lee K.M.; Lee Y.R.; Kim I.Y.; Kim T.W.; Han S.Y.; Hwang S.J. Heterolayered Li+-MnO2-[Mn1/3Co1/3Ni1/3] O2 Nanocomposites with Improved Electrode Functionality: Effects of Heat Treatment and Layer Doping on the Electrode Performance of Reassembled Lithium Manganate. J. Phys. Chem. C 2012, 116, 3311-3319. https://doi.org/10.1021/jp210063c.

[42]

Wang X.H.; Huang F.H.; Rong F.; He P.; Que R.H.; Jiang S.P. Unique MOF-derived hierarchical MnO2 nanotubes@NiCo-LDH/CoS2 nanocage materials as high performance supercapacitors. J. Mater. Chem. A 2019, 7, 12018-12028. https://doi.org/10.1039/C9TA01951K.

[43]

Li H.; Lyu J.; Chen Y.; Jian L.; Li R.; Liu X.; Dong X.; Ma C.; Ma H. Consecutive metal oxides with self-supported nanoarchitecture achieves highly stable and enhanced photoelectrocatalytic oxidation for water purification. Solid State Electrochem. 2021, 25, 1083-1092. https://doi.org/10.1007/s10008-020-04886-7

[44]

Wang H.; Liang Y.; Liu L.; Hu J.; Wu P.; Cui W. Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGo. Appl. Catal. B Environ. 2017, 208, 22-34. https://doi.org/10.1016/j.apcatb.2017.02.055.

[45]

Costa M.J.S.; Costa G.S.; Lima A.E.B.; Luz G.E., Jr.; Longo E.; Cavalcante L.S.; Santos R.S. Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density. Ionics 2018, 24, 3291-3297. https://doi.org/10.1007/s11581-018-2640-1.

[46]

Li J.W.; Wang X.Y.; Fang H.L.; Guo X.M.; Zhou R.F.; Wang C.; Li J.; Ghazzal M.N.; Rui Z.B. Unraveling the role of surface and interfacial defects in hydrogen production to construct an all-in-one broken-gap photocatalyst. J. Mater. Chem. A 2023, 11, 25639-25649. https://doi.org/10.1039/D3TA03079B.

[47]

Guo F.; Shi W.L.; Wang H.B.; Han M.M.; Huang H.; Liu Y.; Kang Z.H. Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal. Sci. Technol. 2017, 7, 3325-3331. https://doi.org/10.1039/C7CY00960G.

[48]

Pinaud B.A.; Chen Z.; Abram D.N.; Jaramilo T.F. Thin Films of Sodium Birnessite-Type MnO2: Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry. J. Phys. Chem. C 2011, 115, 11830-11838. https://doi.org/10.1021/jp200015p.

[49]

Sboui M.; Niu W.K.; Li D.Z.; Lu G.; Zhou N.; Zhang K.; Pan J.H. Fabrication of electrically conductive TiO2/PANI/PVDF composite membranes for simultaneous photoelectrocatalysis and microfiltration of azo dye from wastewater. Appl. Catal. A-Gen. 2022, 644, 118837. https://doi.org/10.1016/j.apcata.2022.118837.

[50]

Li J.W.; Fang H.L.; Wu M.Q.; Ma C.R.; Lian R.Q.; Jiang S.P.; Ghazzal M.N.; Rui Z.B. Selective Cocatalyst Decoration of Narrow-Bandgap Broken-Gap Heterojunction for Directional Charge Transfer and High Photocatalytic Properties. Small 2023, 19, 2300559. https://doi.org/10.1002/small.202300559.

[51]

Li J.W.; Huang Z.Y.; Wang C.; Tian L.; Yang X.Q.; Zhou R.F.; Ghazzal M.N.; Liu Z.Q. Linkage effect in the bandgap-broken V2O5-GdCrO3 heterojunction by carbon allotropes for boosting photocatalytic H2 production. Appl. Catal. B Environ. 2024, 340, 123181. https://doi.org/10.1016/j.apcatb.2023.123181.

[52]

Li J.W.; Xiang T.C.; Liu X.; Ghazzl M.N.; Liu Z.Q. Structure-function Relationship of P-Block Bismuth for Selective Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. 2024, 63, e202407287. https://doi.org/10.1002/anie.202407287.

[53]

Sheng H.; Janes A.N.; Ross R.D.; Ross R.D.; Kaiman D.; Huang J.Z.; Song B.; Schmidt J.R.; Jin S. Stable and Selective Electrosynthesis of Hydrogen Peroxide and the Electro-Fenton Process on CoSe2 Polymorph Catalysts. Energy Environ. Sci. 2020, 13, 4189-4203. https://doi.org/10.1039/D0EE01925A.

[54]

Wu Q.; Zou H.; Mao X.; He J.H.; Shi Y.M.; Chen S.M.; Yan X.C.; Wu L.Y.; Lang C.G.; Zhang B.; et al. Unveiling the dynamic active site of defective carbon-based electrocatalysts for hydrogen peroxide production. Nat. Commun. 2023, 14, 6275. https://doi.org/10.1038/s41467-023-41947-7.

[55]

Ao X.W.; Liu W.J. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017, 313, 629-637. https://doi.org/10.1016/j.cej.2016.12.089.

[56]

Luo K.; Yang Q.; Pang Y.; Wang D.B.; Li X.; Lei M.; Huang Q. Unveiling the mechanism of biochar-activated hydrogen peroxide on the degradation of ciprofloxacin. Chem. Eng. J. 2019, 374, 520-530. https://doi.org/10.1016/j.cej.2019.05.204.

[57]

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-177.

[58]

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

[59]

Magesh G.; Arun A.P.; Poonguzhali R.V.; Kumar E.R.; Pradeep I.; Kumar R.R.; Abd El-Rehim A.F. Pure α-MnO2 and Ag decorated α-MnO2 nanorods for photocatalytic activity. J. Mol. Struct. 2025, 1329, 141444. https://doi.org/10.1016/j.molstruc.2025.141444.

[60]

Ma H.; Li H.; Wang J.; Wang X.; Wang G.; Liu X. Developing Z-scheme Bi2MoO6@α-MnO2 beaded core-shell heterostructure in photoelectrocatalytic treatment of organic wastewater. J. Environ. Manag. 2024, 3677, 121964. https://doi.org/10.1016/j.jenvman.2024.121964.

[61]

Wu Y.; Fang X.; Shen X.; Yu X.; Xia C.; Xu L.; Zhang Y.; Gan L. Synergetic effect of photocatalytic oxidation plus catalytic oxidation on the performance of coconut shell fiber biochar decorated α-MnO2 under visible light towards BPA degradation. J. Environ. Manag. 2023, 345, 118911. https://doi.org/10.1016/j.jenvman.2023.118911.

[62]

Ullah A.; Rahman L.; Hussain S.Z.; Abbas W.; Tawab A.; Jilani A.; Bajwa S.Z.; Khan W.S.; Riaz R.; Hussain I.; et al. Mechanistic insight of dye degradation using TiO2 anchored α-MnO2 nanorods as promising sunlight driven photocatalyst. Mater. Sci. Eng. B 2021, 271, 115257. https://doi.org/10.1016/j.mseb.2021.115257.

[63]

Yusuf T.L.; Ogundare S.A.; Opoku F.; Mabuba N. Photoelectrocatalytic degradation of sulfamethoxazole over S-Scheme Co3Se4/BiVO4 heterojunction photoanode: An experimental and density functional theory investigations. Surf. Interfaces 2023, 36, 102534. https://doi.org/10.1016/j.surfin.2022.102534.

[64]

Mafa P.J.; Kuvarega A.T.; Mamba B.B.; Ntsendwana B. Photoelectrocatalytic degradation of sulfamethoxazole on g- C3N4/BiOI/EG pn heterojunction photoanode under visible light irradiation. Appl. Surf. Sci. 2019, 483, 506-520. https://doi.org/10.1016/j.apsusc.2019.03.281.

PDF (4519KB)

563

Accesses

0

Citation

Detail

Sections
Recommended

/