Monitoring water quality in the lower Kansas River using remote sensing

Nicholas Tufillaro , Philipp Grötsch , Ivan Lalović , Sara de Moitié , Luke Zeitlin , Omar Zurita

River ›› 2024, Vol. 3 ›› Issue (3) : 284 -303.

PDF (10191KB)
River ›› 2024, Vol. 3 ›› Issue (3) : 284 -303. DOI: 10.1002/rvr2.97
RESEARCH ARTICLE

Monitoring water quality in the lower Kansas River using remote sensing

Author information +
History +
PDF (10191KB)

Abstract

We demonstrate how to combine remote sensing data from satellite imagery (Sentinel-2) with in situ water quality gauging (USGS Super Gages and the Gybe hyperspectral radiometer) to create spatially dense maps of water quality parameters (chlorophyll-a concentration, turbidity, and nitrate plus nitrite concentration) along the lower Kansas River. The water quality maps are created using locally tuned models of the target water quality parameters, and this study describes the steps used to design, calibrate, and validate the empirical correlations. Water quality parameters such as chlorophyll-a concentration are correlated with well-studied absorption and scattering features in the visible spectrum (roughly 400–700 nm). Nutrients (such as nitrate plus nitrite concentration) lack strong absorption features in the visible spectrum, and in those cases we describe a novel surrogate data modeling approach that identifies overlapping water parcels between the in situ gauging and the remote sensing imagery. Measurements from the overlapping water parcels yield excellent correlations (R2 > 0.9) for the target water quality parameters for limited windows of time (or limited sections of river reaches). Examples are provided illustrating how the water quality maps can be used to track river inputs from ungauged sources (such as creeks), or reveal the mixing patterns at the confluences.

Keywords

harmful algal blooms / hyperspectral / Kansas River / nitrates / nutrients / remote sensing / turbidity / water quality

Cite this article

Download citation ▾
Nicholas Tufillaro, Philipp Grötsch, Ivan Lalović, Sara de Moitié, Luke Zeitlin, Omar Zurita. Monitoring water quality in the lower Kansas River using remote sensing. River, 2024, 3(3): 284-303 DOI:10.1002/rvr2.97

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker, D., Huggins, D., Cringan, S., Angelo, R., & Mehl, H. (2022). Environmental flow requirements for the Kansas River: Background literature review and summary. Technical report, U.S. Army Corps of Engineers.

[2]

Bolade, O., & Hansen, A. T. (2023). Inferring drivers of nitrate and sediment event dynamics from hysteresis metrics for two large agricultural watersheds. Hydrological Processes, 37(9), e14969.

[3]

Constantinescu, G. (2020). On shallow mixing interfaces and their relevance for understanding mixing at river confluences. In M. Garcia-Villalba, H. Kuerten, & M. V. Salvetti (Eds.), Direct and large eddy simulation XII volume direct and large eddy simulation XII of ERCOFTAC series (pp. 491–502). Springer International Publishing. https://link.springer.com/book/10.1007/978-3-030-42822-8

[4]

Crain, A. S. (2020). The importance of U.S. geological survey water-quality super gages. Technical Report 2020-3019, U.S. Geological Survey.

[5]

Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., & Knaeps, E. (2015). A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sensing of Environment, 156, 157–168.

[6]

Finch, M. S., Hydes, D. J., Clayson, C. H., Weigl, B., Dakin, J., & Gwilliam, P. (1998). A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials. Analytica Chimica Acta, 377(2–3), 167–177.

[7]

Gege, P., & Grötsch, P. (2016). A spectral model for correcting sunglint and skyglint. Proceedings of Ocean Optics XXIII 2016, 1–10.

[8]

Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, 16(8), 1298.

[9]

Gilerson, A., Ondrusek, M., Tzortziou, M., Foster, R., El-Habashi, A., Tiwari, S. P., & Ahmed, S. (2015). Multi-band algorithms for the estimation of chlorophyll concentration in the chesapeake bay, Remote sensing of the ocean, sea ice, coastal waters, and large water regions 2015 (Vol. 9638, pp. 60–71). SPIE.

[10]

Goryl, P., Fox, N., Donlon, C., & Castracane, P. (2023). Fiducial reference measurements (FRMs): What are they? Remote Sensing, 15(20), 5017.

[11]

Gower, J. C., & Dijksterhuis, G. B. (2004). Procrustes problem (Vol. 30). OUP.

[12]

Grötsch, P., Foster, R., & Gilerson, A. (2020). Exploring the limits for sky and sun glint correction of hyperspectral above-surface reflectance observations. Applied Optics, 59(9), 2942–2954.

[13]

Grötsch, P., Gege, P., Simis, S. G. H., Eleveld, M. A., & Peters, S. W. M. (2017). Variability of adjacency effects in sky reflectance measurements. Optics Letters, 42(17), 3359–3362.

[14]

Harmancioglu, N. B., & Alpaslan, N. (1994). Basic approaches in design of water quality monitoring networks. Water Science and Technology, 30(10), 49–56.

[15]

Huangfu, K., Li, J., Zhang, X., Zhang, J., Cui, H., & Sun, Q. (2020). Remote estimation of water quality parameters of medium-and small-sized inland rivers using sentinel-2 imagery. Water, 12(11), 3124.

[16]

Hu, C., Lee, Z., & Franz, B. (2012). Chlorophyll algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1).

[17]

http://www.gybe.eco. (n.d.).

[18]

https://kansasriver.org/. (n.d.).

[19]

https://www.usgs.gov/centers/kansas-water-science-center/science/water-quality-monitoring-lower-kansas-river-basin

[20]

Kansas Lower Republic Basin Total Maximum Daily Load (n.d.). https://www.kdhe.ks.gov/DocumentCenter/View/14018/Crooked-Creek-TP-PDF

[21]

Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394–406.

[22]

Musolff, A., Zhan, Q., Dupas, R., Minaudo, C., Fleckenstein, J. H., Rode, M., Dehaspe, J., & Rinke, K. (2021). Spatial and temporal variability in concentration-discharge relationships at the event scale. Water Resources Research, 57(10), e2020WR029442.

[23]

Nechad, B., Ruddick, K. G., & Park, Y. (2010). Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sensing of Environment, 114, 854–866.

[24]

Pahlevan, N., Sarkar, S., Franz, B. A., Balasubramanian, S. V., & He, J. (2017). Sentinel-2 multispectral instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sensing of Environment, 201, 47–56.

[25]

Paulino, R. S., Martins, V. S., Novo, E. M. L. M., Barbosa, C. C. F., de Carvalho, L. A. S., & Begliomini, F. N. (2022). Assessment of adjacency correction over inland waters using sentinel-2 MSI images. Remote Sensing, 14(8), 1829.

[26]

Rasmussen, T. J., Ziegler, A. C., & Rasmussen, P. P. (2005). Estimation of constituent concentrations, densities, loads, and yields in lower Kansas River, northeast Kansas, using regression models and continuous water-quality monitoring, January 2000 through December 2003. Technical report, USGS.

[27]

Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in water resources. Water Resources Research, 48(7).

[28]

Ruddick, K., Voss, K., Boss, E., Castagna, A., Frouin, R., Gilerson, A., Hieronymi, M., Johnson, B. C., Kuusk, J., Lee, Z., Ondrusek, M., Vabson, V., & Vendt, R. (2019). A review of protocols for fiducial reference measurements of water-leaving radiance for validation of satellite remote-sensing data over water. Remote Sensing, 11(19), 2198.

[29]

Ruddick, K. G., De Cauwer, V., Park, Y.-J., & Moore, G. (2006). Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnology and Oceanography, 51(2), 1167–1179.

[30]

Rush, M. (2021). Lower Kansas River watershed restoration and protection strategies (WRAPS) Plan 2021. Technical report, Kansas Alliance for Wetlands and Streams. https://kswraps.org/wp-content/uploads/2023/03/Lower-Kansas-River-WRAPS-Plan-Update-2022-Final.pdf

[31]

Rutter, A. P., Snyder, D. C., Stone, E. A., Shelton, B., DeMinter, J., & Schauer, J. J. (2014). Preliminary assessment of the anthropogenic and biogenic contributions to secondary organic aerosols at two industrial cities in the upper midwest. Atmospheric Environment, 84, 307–313.

[32]

Speir, S. L., Rose, L. A., Blaszczak, J. R., Kincaid, D. W., Fazekas, H. M., Webster, A. J., Wolford, M. A., Shogren, A. J., & Wymore, A. S. (2024). Catchment concentration-discharge relationships across temporal scales: A review. Wiley Interdisciplinary Reviews: Water, 11(2), e1702.

[33]

Sukhodolov, A. N., Shumilova, O. O., Constantinescu, G. S., Lewis, Q. W., & Rhoads, B. L. (2023). Mixing dynamics at river confluences governed by intermodal behaviour. Nature Geoscience, 16(1), 89–93.

[34]

Timmer, B., Reshitnyk, L. Y., Hessing-Lewis, M., Juanes, F., & Costa, M. (2022). Comparing the use of red-edge and near-infrared wavelength ranges for detecting submerged kelp canopy. Remote Sensing, 14(9), 2241.

[35]

Tufillaro, N. (2024). A manifold learning perspective on surrogate modeling of nitrate concentration in the Kansas River. Water Practice & Technology, 19(4): 1148–1161.

[36]

Tufillaro, N., Piazza, B., Reddy, S., Baustian, J., Sousa, D., Grötsch, P., Lalović I., De Moitié S., & Zurita, O. (2024). Linking optical data and nitrates in the lower Mississippi River to enable satellite-based monitoring of nutrient reduction goals. Ecohydrology, 17(5), e2631.

[37]

Umar, M., Rhoads, B. L., & Greenberg, J. A. (2018). Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. Journal of Hydrology, 556, 325–338.

[38]

Vanhellemont, Q., & Ruddick, K. (2018). Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sensing of Environment, 216, 586–597.

[39]

Waite, T., Jankowski, K. J., Bruesewitz, D. A., Van Appledorn, M., Johnston, M., Houser, J. N., Baumann, D. A., & Bennie, B. (2023). River geomorphology affects biogeochemical responses to hydrologic events in a large river ecosystem. Water Resources Research, 59(7), e2022WR033662.

[40]

Werther, M., Odermatt, D., Simis, S. G. H., Gurlin, D., Lehmann, M. K., Kutser, T., Gupana, R., Varley, A., Hunter, P. D., Tyler, A. N., & Spyrakos, E. (2022). A Bayesian approach for remote sensing of chlorophyll-a and associated retrieval uncertainty in oligotrophic and mesotrophic lakes. Remote Sensing of Environment, 283, 113295.

[41]

Williams, T. J. (2021). Linear regression model documentation and updates for computing water-quality constituent concentrations or densities using continuous real-time water-quality data for the Kansas river, Kansas, July 2012 through September 2019. Technical report, US Geological Survey.

RIGHTS & PERMISSIONS

2024 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (10191KB)

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/