Discharge coefficient prediction and sensitivity analysis for triangular broad-crested weir using machine learning methods

Guiying Shen , Dingye Cao , Abbas Parsaie

River ›› 2024, Vol. 3 ›› Issue (3) : 316 -323.

PDF (1409KB)
River ›› 2024, Vol. 3 ›› Issue (3) : 316 -323. DOI: 10.1002/rvr2.95
RESEARCH ARTICLE

Discharge coefficient prediction and sensitivity analysis for triangular broad-crested weir using machine learning methods

Author information +
History +
PDF (1409KB)

Abstract

The broad-crested weir is convenient to construct and has a small amount of excavation, widely used in practical engineering. Discharge computing has been the focus of research on this structure, thus developing generalized regression neural network (GRNN), genetic programming (GP), and extreme learning machine (ELM) are used to predict the discharge coefficient (Cd) of the triangular broad-crested weir. The comprehensive analysis shows that the ELM model has high stability, predictive ability, and computational speed. The coefficient of determination (R^2) is 0.99982, the mean absolute percentage error (MAPE) is 0.000261, the Nash-Sutcliffe coefficient (NSE) is 0.99977, and the root means square error (RMSE) is 4.17E-05 in the testing phase. The apex angle θ is the most critical parameter affecting the Cd, and the contribution to the Cd is 52.45%. A new computational formula is proposed and compared with the accuracy of empirical formulas, showing that the intelligent method has higher accuracy and efficiency.

Keywords

broad-crested weir / discharge coefficient / machine learning / quantitative analysis

Cite this article

Download citation ▾
Guiying Shen, Dingye Cao, Abbas Parsaie. Discharge coefficient prediction and sensitivity analysis for triangular broad-crested weir using machine learning methods. River, 2024, 3(3): 316-323 DOI:10.1002/rvr2.95

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achour, B., & Amara, L. (2022). Flow measurement using a triangular broad crested weir theory and experimental validation. Flow Measurement and Instrumentation, 83, 102088.

[2]

Akbari, M., Salmasi, F., Arvanaghi, H., Karbasi, M., & Farsadizadeh, D. (2019). Application of Gaussian process regression model to predict discharge coefficient of gated piano key weir. Water Resources Management, 33, 3929–3947.

[3]

Al-dabbagh, M. A., & Al-Zubaidy, S. D. (2018). Evaluation of flow behavior over broad-crested weirs of a triangular cross-section using CFD techniques. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 2, 361–367.

[4]

Azimi, H., Bonakdari, H., & Ebtehaj, I. (2017). Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Measurement and Instrumentation, 54, 216–223.

[5]

Barenblatt, G. I. (1987). Dimensional analysis. CRC Press.

[6]

Ebtehaj, I., Bonakdari, H., Khoshbin, F., & Azimi, H. (2015). Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Measurement and Instrumentation, 41, 67–74.

[7]

Haghbin, M., Sharafati, A., Aghamajidi, R., Haji Seyed Asadollah, S. B., Noghani, M. H. M., & Jalón, M. L. (2022). Determination of discharge coefficient of stepped morning glory spillway using a hybrid data-driven method. Flow Measurement and Instrumentation, 85, 102161.

[8]

Hoseini, S. H. (2014). Experimental investigation of flow over a triangular broad-crested weir. ISH Journal of Hydraulic Engineering, 20(2), 230–237.

[9]

Hu, Z., Karami, H., Rezaei, A., DadrasAjirlou, Y., Piran, M. J., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Using soft computing and machine learning algorithms to predict the discharge coefficient of curved labyrinth overflows. Engineering Applications of Computational Fluid Mechanics, 15(1), 1002–1015.

[10]

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

[11]

Ismael, A. A., Suleiman, S. J., Al-Nima, R. R. O., & Al-Ansari, N. (2021). Predicting the discharge coefficient of oblique cylindrical weir using neural network techniques. Arabian Journal of Geosciences, 14, 1670.

[12]

Jan, C. D., Chang, C. J., & Kuo, F. H. (2009). Experiments on discharge equations of compound broad-crested weirs. Journal of irrigation and drainage engineering, 135(4), 511–515.

[13]

Kisi, O., Dailr, A. H., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58.

[14]

Kisi, O., Shiri, J., & Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences, 51, 108–117.

[15]

Koza, J. (1994). Genetic programming as a means for programming computers by natural selection. Statistics and Computing, 4, 87–112.

[16]

Li, X., Zhang, H., Liu, Y., & Wan, W. (2021). Research on regional water quality prediction method based on machine learning of multi-source data. Water Conservancy and Hydropower Technology, 52(11), 152–163.

[17]

Liu, Y., Liu, Y., Zhang, J., Chai, F., Li, M., & Mu, J. (2022). Research on urban flood prediction method combining BP neural network and numerical modeling. Journal of Water Resources, 53(03), 284–295.

[18]

Luo, M., & Zhang, K. (2014). A hybrid approach combining extreme learning machine and sparse representation for image classification. Engineering Applications of Artificial Intelligence, 27, 228–235.

[19]

Nicosia, A., & Ferro, V. (2022). A new approach for deducing the stage-discharge relationship of a triangular broad-crested device. Flow Measurement and Instrumentation, 85, 102160.

[20]

Norouzi, R., Arvanaghi, H., Salmasi, F., Farsadizadeh, D., & Ghorbani, M. A. (2020a). A new approach for oblique weir discharge coefficient prediction based on hybrid inclusive multiple model. Flow Measurement and Instrumentation, 76, 101810.

[21]

Norouzi, R., Arvanaghi, H., Salmasi, F., Farsadizadeh, D., & Ghorbani, M. A. (2020b). A new approach for oblique weir discharge coefficient prediction based on hybrid inclusive multiple model. Flow Measurement and Instrumentation, 76, 101810.

[22]

Nossent, J., Elsen, P., & Bauwens, W. (2011). Sobol’ sensitivity analysis of a complex environmental model. Environmental Modelling & Software, 26(12), 1515–1525.

[23]

Rao, S. S., & Shukla, M. K. (1971). Characteristics of flow over weirs of finite crest width. Journal of the Hydraulics Division, 97(11), 1807–1816.

[24]

Roushangar, K., Akhgar, S., Salmasi, F., & Shiri, J. (2014). Modeling energy dissipation over stepped spillways using machine learning approaches. Journal of Hydrology, 508, 254–265.

[25]

Roushangar, K., Alami, M. T., Majedi Asl, M., & Shiri, J. (2017). Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering, 23(3), 331–340.

[26]

Roushangar, K., Alami, M. T., Shiri, J., & Asl, M. M. (2018a). Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology research, 49(3), 924–938.

[27]

Roushangar, K., Alipour, S. M., & Mouaze, D. (2018b). Linear and non-linear approaches to predict the Darcy-Weisbach friction factor of overland flow using the extreme learning machine approach. International Journal of Sediment Research, 33(4), 415–432.

[28]

Roushangar, K., Khoshkanar, R., & Shiri, J. (2016). Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods. ISH Journal of Hydraulic Engineering, 22(3), 254–261.

[29]

Salmasi, F., Nouri, M., Sihag, P., & Abraham, J. (2021). Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data. Water Supply, 21(1), 232–248.

[30]

Seyedian, S. M., Haghiabi, A., & Parsaie, A. (2023). Reliable prediction of the discharge coefficient of triangular labyrinth weir based on soft computing techniques. Flow Measurement and Instrumentation, 92, 102403.

[31]

Shariq, A., Hussain, A., & Ansari, M. A. (2022). Prediction of discharge coefficient for side rectangular weir using group method of data handling (GMDH). River Hydraulics: Hydraulics, Water Resources and Coastal Engineering, 2, 83–95.

[32]

Sobol’ I. Y. M. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe modelirovanie, 2(1), 112–118.

[33]

Sobol’ I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1–3), 271–280.

[34]

Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision support systems, 46(1), 411–419.

[35]

Tao, H., Jamei, M., Ahmadianfar, I., Khedher, K. M., Farooque, A. A., & Yaseen, Z. M. (2022). Discharge coefficient prediction of canal radial gate using neurocomputing models: an investigation of free and submerged flow scenarios. Engineering Applications of Computational Fluid Mechanics, 16(1), 1–19.

[36]

Wang, F., Zheng, S., Ren, Y., Liu, W., & Wu, C. (2022). Application of hybrid neural network in discharge coefficient prediction of triangular labyrinth weir. Flow Measurement and Instrumentation, 83, 102108.

[37]

Zounemat-Kermani, M., Golestani Kermani, S., Kiyaninejad, M., & Kisi, O. (2019). Evaluating the application of data-driven intelligent methods to estimate discharge over triangular arced labyrinth weir. Flow Measurement and Instrumentation, 68, 101573.

RIGHTS & PERMISSIONS

2024 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (1409KB)

454

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/