A deterministic distributed modeling approach of Mediterranean water-cycle assessment, application in the Var catchment, France

Siyuan Chang , Zhengmiao Li , Xinyi Lian , Philippe Gourbesville , Qiang Ma

River ›› 2025, Vol. 4 ›› Issue (3) : 297 -310.

PDF
River ›› 2025, Vol. 4 ›› Issue (3) : 297 -310. DOI: 10.1002/rvr2.70024
RESEARCH ARTICLE

A deterministic distributed modeling approach of Mediterranean water-cycle assessment, application in the Var catchment, France

Author information +
History +
PDF

Abstract

Characterized by special morphologic, geographic, hydrologic, and societal behaviors, the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of water supply, inundation risks, and environment management under the perspective of climate change. To have a comprehensive understanding of the Mediterranean water-cycle system, a deterministic distributed hydrologic modeling approach has been developed and presented in this study based on an application in the Var catchment (2800 km2) located at the French Mediterranean region. A 1D and 2D coupled model of MIKE SHE and MIKE 11 has been set up under a series of hypotheses to represent the whole hydrologic and hydrodynamic processes including rainfall-runoff, snow-melting, channel flow, overland flow, and the water exchange between land surface and unsaturated/saturated zones. The developed model was first calibrated with 4 years daily records from 2008 to 2011, then to be validated and further run within hourly time interval to produce detailed representation of the catchment water-cycle from 2012 to 2014. The deterministic distributed modeling approach presented in this study is able to represent its complicated water-cycle and used for supporting the decision-making process of the water resources management of the catchment.

Keywords

1D/2D coupled model / distributed hydrological model / flood management / Mediterranean catchment

Cite this article

Download citation ▾
Siyuan Chang, Zhengmiao Li, Xinyi Lian, Philippe Gourbesville, Qiang Ma. A deterministic distributed modeling approach of Mediterranean water-cycle assessment, application in the Var catchment, France. River, 2025, 4(3): 297-310 DOI:10.1002/rvr2.70024

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allamano, P., Claps, P., Laio, F., & Thea, C. (2009). A data-based assessment of the dependence of short-duration precipitation on elevation. Physics and Chemistry of the Earth, Parts A/B/C, 34(10–12), 635-641. https://doi.org/10.1016/j.pce.2009.01.001

[2]

Collier, N., Radwan, H., Dalcin, L., & Calo, V. M. (2011). Diffusive wave approximation to the shallow water equations: Computational approach. Procedia Computer Science, 4, 1828-1833. https://doi.org/10.1016/j.procs.2011.04.198

[3]

Cornelissen, T., Diekkrüger, B., & Bogena, H. (2016). Using high-resolution data to test parameter sensitivity of the distributed hydrological model HydroGeoSphere. Water, 8(5), 202. https://doi.org/10.3390/w8050202

[4]

Du, M., Fouché, O., Zavattero, E., Delestre, O., & Gourbesville, P. (2018). Water planning in a mixed land use Mediterranean area: Point-source abstraction and pollution scenarios by a numerical model of varying stream-aquifer regime. Environmental Science and Pollution Research International, 26(3), 2145-2166. https://doi.org/10.1007/s11356-018-1437-0

[5]

Du, M., Zavattero, E., Ma, Q., Delestre, O., Gourbesville, P., & Fouché, O. (2018). 3D modeling of a complex alluvial aquifer for efficient management—Application to the lower valley of Var river, France. La Houille Blanche, 104(1), 60-69. https://doi.org/10.1051/lhb/2018009

[6]

Emily, A., Tennevin, G., & Mangan, C. (2010). Etude hydrogeologique des nappes profondes de la basse-vallee du var (Alpes-Maritimes). H2EA Consulting firm and Mangan Consulting firm.

[7]

Fayad, A., Gascoin, S., Faour, G., López-Moreno, J. I., Drapeau, L., Page, M. L., & Escadafal, R. (2017). Snow hydrology in Mediterranean mountain regions: A review. Journal of Hydrology, 551, 374-396. https://doi.org/10.1016/j.jhydrol.2017.05.063

[8]

Guglielmi, Y., & Mudry, J. (1996). Estimation of spatial and temporal variability of recharge fluxes to an alluvial aquifer in a fore land area by water chemistry and isotopes. Ground Water, 34(6), 1017-1023. https://doi.org/10.1111/j.1745-6584.1996.tb02167.x

[9]

Guinot, V., & Gourbesville, P. (2003). Calibration of physically based models: Back to basics? Journal of Hydroinformatics, 5(4), 233-244. https://doi.org/10.2166/hydro.2003.0020

[10]

Kumar, S., Zwiers, F., Dirmeyer, P. A., Lawrence, D. M., Shrestha, R., & Werner, A. T. (2016). Terrestrial contribution to the heterogeneity in hydrological changes under global warming. Water Resources Research, 52(4), 3127-3142. https://doi.org/10.1002/2016wr018607

[11]

Kyselý, J., Beguería, S., Beranová, R., Gaál, L., & López-Moreno, J. I. (2012). Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change, 98–99, 63-72. https://doi.org/10.1016/j.gloplacha.2012.06.010

[12]

Linsley, R. K., Kohler, M. A., & Paulhus, J. L. H. (1958). Hydrology for engineers (p. 340). McGraw-Hill.

[13]

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis, M., Ulbrich, U., & Xoplaki, E. (2006). The Mediterranean climate: An overview of the main characteristics and issues, Mediterranean. Developments in Earth and Environmental Sciences, 4, 1-26. https://doi.org/10.1016/s1571-9197(06)80003-0

[14]

Ma, Q., Zavattero, E., Du, M., Vo, N. D., & Gourbesville, P. (2016). Assessment of high resolution topography impacts on deterministic distributed hydrological model in extreme rainfall-runoff simulation. Procedia Engineering, 154, 601-608. https://doi.org/10.1016/j.proeng.2016.07.558

[15]

Maidment, D. R., & Hoogerwerf, T. N. (2002). Parameter sensitivity in hydrologic modeling (p. 306). Center for Research in Water Resources, University of Texas at Austin.

[16]

Mair, A., & Fares, A. (2011). Comparison of rainfall interpolation methods in a Mountainous Region of a Tropical Island. Journal of Hydrologic Engineering, 16(4), 371-383. https://doi.org/10.1061/(asce)he.1943-5584.0000330

[17]

Martínez-Murillo, J. F., Hueso-González, P., & Ruiz-Sinoga, J. D. (2017). Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions. Science of the Total Environment, 595, 400-412. https://doi.org/10.1016/j.scitotenv.2017.03.291

[18]

McMichael, C. E., Hope, A. S., & Loaiciga, H. A. (2006). Distributed hydrological modelling in California semi-arid shrublands: MIKE SHE model calibration and uncertainty estimation. Journal of Hydrology, 317(3–4), 307-324. https://doi.org/10.1016/j.jhydrol.2005.05.023

[19]

Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347-350. https://doi.org/10.1038/nature04312

[20]

Nohara, D., Kitoh, A., Hosaka, M., & Oki, T. (2006). Impact of climate change on river discharge projected by multimodel ensemble. Journal of Hydrometeorology, 7(5), 1076-1089. https://doi.org/10.1175/jhm531.1

[21]

Picourlat, F., Ler, L. G., Targosz, J., Game, P., Amaou Tallé, H., Abily, M., & Billaud, F. (2025). AquaVar decision support system for water resource management: Lessons learned from the first five years of operation. River, 4(1), 44-54.

[22]

Potot, C., Féraud, G., Schärer, U., Barats, A., Durrieu, G., Le Poupon, C., Travi, Y., & Simler, R. (2012). Groundwater and river baseline quality using major, trace elements, organic carbon and Sr–Pb–O isotopes in a Mediterranean catchment: The case of the Lower Var Valley (south-eastern France). Journal of Hydrology, 472–473, 126-147. https://doi.org/10.1016/j.jhydrol.2012.09.023

[23]

Refsgaard, J. C., & Storm, B. (1995). MIKE SHE. In V. P. Singh (Ed.), Computer models of watershed hydrology (pp. 809-846). Water Resources Publications.

[24]

Rujner, H., Leonhardt, G., Marsalek, J., & Viklander, M. (2018). High-resolution modelling of the grass swale response to runoff inflows with Mike SHE. Journal of Hydrology, 562, 411-422. https://doi.org/10.1016/j.jhydrol.2018.05.024

[25]

Thompson, J. R., Sørenson, H. R., Gavin, H., & Refsgaard, A. (2004). Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology, 293(1–4), 151-179. https://doi.org/10.1016/j.jhydrol.2004.01.017

[26]

Todd, D. K. (1980). Groundwater hydrology (p. 556). John Wiley and Sons.

[27]

Walling, D. E., & Kleo, A. H. A. (1979). Sediment yields of rivers in areas of low precipitation: A global view, Hydrology of areas of low precipitation (Proc. Canberra symposium, December 1979). IAHS Press, Wallingford, UK, pp. 479–493.

[28]

Wang, S., Zhang, Z., Sun, G., Strauss, P., Guo, J., Tang, Y., & Yao, A. (2012). Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE model for a large watershed in Northern China. Hydrology and Earth System Sciences, 16(12), 4621-4632. https://doi.org/10.5194/hess-16-4621-2012

[29]

Yan, J., & Smith, K. R. (1994). Simulation of integrated surface water and ground water systems—Model formulation. Journal of the American Water Resources Association, 30(5), 879-890. https://doi.org/10.1111/j.1752-1688.1994.tb03336.x

RIGHTS & PERMISSIONS

2025 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/