Integrated hydrological modeling of anthropogenic and climatic perturbations in the upper Jemma subbasin of the Upper Blue Nile Basin, Ethiopia

Solomon D. Alemu , Abebe T. Ayalew , Yohannes M. Andiye , Mekuanent M. Finsa

River ›› 2025, Vol. 4 ›› Issue (3) : 375 -399.

PDF
River ›› 2025, Vol. 4 ›› Issue (3) : 375 -399. DOI: 10.1002/rvr2.70019
RESEARCH ARTICLE

Integrated hydrological modeling of anthropogenic and climatic perturbations in the upper Jemma subbasin of the Upper Blue Nile Basin, Ethiopia

Author information +
History +
PDF

Abstract

Anthropogenically induced land use/land cover (LULC) transformations and accelerating climatic variabilities have emerged as pivotal forces reshaping the hydrological equilibrium of fluvial systems, particularly in ecologically sensitive basins. This study systematically interrogates the compounded ramifications of LULC dynamics and projected climate change on the hydrological response of the Upper Jemma Watershed an integral sub-catchment of the Upper Blue Nile River system. Employing the advanced QSWAT+ hydrological modeling framework within a GIS interface, the analysis integrates bias-corrected climatic projections under RCP 4.5 and RCP 8.5 scenarios alongside multi-temporal remote sensing-derived land cover datasets. The findings unveil an unequivocal intensification of surface runoff and streamflow due to expansive agricultural encroachment, juxtaposed with a discernible decline in evapotranspiration and soil water retention. Climatic perturbations, notably temperature elevation and precipitation attenuation, further exacerbate these trends, with pronounced seasonality in hydrological fluxes. Importantly, synergistic interactions between land cover transformation and climatic anomalies manifest in nonlinear hydrological alterations, amplifying peak flows and diminishing baseflows. This underscores the riverine system's heightened vulnerability and the necessity for integrated watershed management strategies that account for multifactorial hydrological stressors. The study provides a robust empirical and modeling basis to inform adaptive water governance within transboundary river basins susceptible to environmental transitions.

Keywords

climate change scenarios / hydrological modeling / integrated watershed management / land use/cover dynamics / QSWAT+ simulation / riverine system vulnerability surface runoff intensification

Cite this article

Download citation ▾
Solomon D. Alemu, Abebe T. Ayalew, Yohannes M. Andiye, Mekuanent M. Finsa. Integrated hydrological modeling of anthropogenic and climatic perturbations in the upper Jemma subbasin of the Upper Blue Nile Basin, Ethiopia. River, 2025, 4(3): 375-399 DOI:10.1002/rvr2.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdulahi, S. D., Abate, B., Harka, A. E., & Husen, S. B. (2022). Response of climate change impact on streamflow: The case of the Upper Awash sub-basin, Ethiopia. Journal of Water and Climate Change, 13(2), 607-628. https://doi.org/10.2166/wcc.2021.251

[2]

Abebe, G., Getachew, D., & Ewunetu, A. (2022). Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Applied Sciences, 4(1), 30. https://doi.org/10.1007/s42452-021-04915-8

[3]

Abungba, J. A., Adjei, K. A., Gyamfi, C., Odai, S. N., Pingale, S. M., & Khare, D. (2022). Implications of land use/land cover changes and climate change on Black Volta Basin Future Water Resources in Ghana. Sustainability (Switzerland), 14(19), 12383. https://doi.org/10.3390/su141912383

[4]

Afzal, M., & Ragab, R. (2020). Assessment of the potential impacts of climate change on the hydrology at catchment scale: Modelling approach including prediction of future drought events using drought indices. Applied Water Science, 10(10), 215. https://doi.org/10.1007/s13201-020-01293-1

[5]

Alehu, B. A., & Bitana, S. G. (2023). Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environmental Processes, 10(1), 14. https://doi.org/10.1007/s40710-023-00626-x

[6]

Ayalew, D. W., Asefa, T., Moges, M. A., & Leyew, S. M. (2022). Evaluating the potential impact of climate change on the hydrology of Ribb catchment, Lake Tana Basin, Ethiopia. Journal of Water and Climate Change, 13(1), 190-205. https://doi.org/10.2166/wcc.2021.049

[7]

Balcha, S. K., Awass, A. A., Hulluka, T. A., Bantider, A., & Ayele, G. T. (2023). Assessment of future climate change impact on water balance components in Central Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change, 14(1), 175-199. https://doi.org/10.2166/wcc.2022.249

[8]

Balcha, S. K., Hulluka, T. A., Awass, A. A., & Bantider, A. (2023). Performance evaluation of multiple regional climate models to simulate rainfall in the Central Rift Valley Lakes Basin of Ethiopia and their selection criteria for the best climate model. Environmental Monitoring and Assessment, 195, 888. https://doi.org/10.1007/s10661-023-11437-w

[9]

Belay, H., Melesse, A. M., & Tegegne, G. (2024). Scenario-based land use and land cover change detection and prediction using the cellular Automata–Markov model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Land, 13(3), 396. https://doi.org/10.3390/land13030396

[10]

Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663-3674. https://doi.org/10.1029/2000WR900207

[11]

Ceribasi, G., & Ceyhunlu, A. I. (2021). Generation of 1D and 2D flood maps of Sakarya river passing through Geyve district of Sakarya city in Turkey. Natural Hazards, 105(1), 631-642. https://doi.org/10.1007/s11069-020-04327-8

[12]

Daramola, J., Adepehin, E. J., Ekhwan, T. M., Choy, L. K., Mokhtar, J., & Tabiti, T. S. (2022). Impacts of land-use change, associated land-use area and runoff on watershed sediment yield: Implications from the Kaduna Watershed. Water (Switzerland), 14(3), 1-23. https://doi.org/10.3390/w14030325

[13]

Das, S. K., Ahsan, A., Khan, M. H. R. B., Tariq, M. A. U. R., Muttil, N., & Ng, A. W. M. (2022). Impacts of climate alteration on the hydrology of the Yarra River Catchment, Australia using GCMs and SWAT model. Water (Switzerland), 14(3), 1-16. https://doi.org/10.3390/w14030445

[14]

Demessie, S. F., Dile, Y. T., Bedadi, B., Gashaw, T., & Tefera, G. W. (2023). Evaluations of regional climate models for simulating precipitation and temperature over the Guder sub-basin of Upper Blue Nile Basin, Ethiopia. Modeling Earth Systems and Environment, 9(4), 4455-4476. https://doi.org/10.1007/s40808-023-01751-0

[15]

Demissie, T. A. (2022). Land use and land cover change dynamics and its impact on watershed hydrological parameters: The case of Awetu watershed, Ethiopia. Journal of Sedimentary Environments, 7(1), 79-94. https://doi.org/10.1007/s43217-021-00084-1

[16]

Dinku, M. B., & Kebede, H. H. (2023). Identification and mapping of surface irrigation potential in the data-scarce Jewuha watershed, Middle Awash River Basin, Ethiopia. Hydrology Research, 54(10), 1227-1245. https://doi.org/10.2166/nh.2023.082

[17]

Diriba, B. T. (2021). Surface runoff modeling using SWAT analysis in Dabus watershed, Ethiopia. Sustainable Water Resources Management, 7(6), 96. https://doi.org/10.1007/s40899-021-00573-1

[18]

Ezra, A., Zhu, K., Dávid, L. D., Yakubu, B. N., & Ritter, K. (2023). Assessing the hydrological impacts of climate change on the Upper Benue River Basin in Nigeria: Trends, relationships, and mitigation strategies. Climate, 11(10), 198. https://doi.org/10.3390/cli11100198

[19]

Gani, M. A., Sajib, A. M., Siddik, M. A., & Md Moniruzzaman, M. (2023). Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques. Environmental Monitoring and Assessment, 195(4), 449. https://doi.org/10.1007/s10661-023-10989-1

[20]

Gebremichael, H. B., Raba, G. A., Beketie, K. T., Feyisa, G. L., & Anose, F. A. (2023). Projection of hydrological responses to changing future climate of Upper Awash Basin using QSWAT model. Environmental Systems Research, 12(25), https://doi.org/10.1186/s40068-023-00305-8

[21]

Goodarzi, M. R., Abedi, M. J., & Niazkar, M. (2024). Effects of climate change on streamflow in the Dez Basin of Iran using the IHACRES model based on the CMIP6 model. Journal of Water and Climate Change, 15(6), 2595-2611. https://doi.org/10.2166/wcc.2024.571

[22]

Kuma, H. G., Feyessa, F. F., & Demissie, T. A. (2021). Hydrologic responses to climate and land-use/land-cover changes in the Bilate catchment, Southern Ethiopia. Journal of Water and Climate Change, 12(8), 3750-3769. https://doi.org/10.2166/wcc.2021.281

[23]

Kumar, M., Denis, D. M., Kundu, A., Joshi, N., & Suryavanshi, S. (2022). Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Applied Water Science, 12(3), 39. https://doi.org/10.1007/s13201-021-01547-6

[24]

Kumar Adhikary, S., Muttil, N., & Gokhan Yilmaz, A. (2016). Ordinary kriging and genetic programming for spatial estimation of rainfall in the Middle Yarra River catchment, Australia. Hydrology Research, 47(6), 1182-1197. https://doi.org/10.2166/nh.2016.196

[25]

Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Hydrological responses of watershed to historical and. Water, 13(2372), 1-20.

[26]

Lin, W., Yuan, H., Dong, W., Zhang, S., Liu, S., Wei, N., Lu, X., Wei, Z., Hu, Y., & Dai, Y. (2023). Reprocessed MODIS version 6.1 leaf area index dataset and its evaluation for land surface and climate modeling. Remote Sensing, 15(7), 1780. https://doi.org/10.3390/rs15071780

[27]

Liu, G., Schmalz, B., Zhang, Q., Qi, S., Zhang, L., & Liu, S. (2022). Assessing effects of land use and land cover changes on hydrological processes and sediment yield in the Xunwu River watershed, Jiangxi Province, China. Frontiers of Earth Science, 16(3), 819-833. https://doi.org/10.1007/s11707-021-0959-9

[28]

Liu, Q., Cheng, P., Lyu, M., Yan, X., Xiao, Q., Li, X., Wang, L., & Bao, L. (2024). Impacts of climate change on runoff in the Heihe River Basin, China. Atmosphere, 15(5), 516. https://doi.org/10.3390/atmos15050516

[29]

Mikaeili, O., & Shourian, M. (2023). Assessment of the analytic and hydrologic methods in separation of watershed response to climate and land use changes. Water Resources Management, 37(6–7), 2575-2591. https://doi.org/10.1007/s11269-022-03324-9

[30]

Mishra, Y., Babel, M. S., Nakamura, T., & Mishra, B. (2021). Impacts of climate change on irrigation water management in the Babai River basin, Nepal. Hydrology, 8(2), 85. https://doi.org/10.3390/hydrology8020085

[31]

Mollel, G. R., Mulungu, D. M. M., Nobert, J., & Alexander, A. C. (2023). Assessment of climate change impacts on hydrological processes in the Usangu catchment of Tanzania under CMIP6 scenarios. Journal of Water and Climate Change, 14(11), 4162-4182. https://doi.org/10.2166/wcc.2023.542

[32]

Nazombe, K. S., Nambazo, O., Mdolo, P., Bakolo, C., & Mlewa, R. (2024). Assessing changes in the ecosystem service value in response to land use and land cover dynamics in Malawi. Environmental Monitoring and Assessment, 196(8), 741. https://doi.org/10.1007/s10661-024-12915-5

[33]

Ngondo, J., Mango, J., Nobert, J., Dubi, A., Li, X., & Cheng, H. (2022). Hydrological response of the Wami-Ruvu Basin to land-use and land-cover changes and its impacts for the future. Water (Switzerland), 14(2), 184. https://doi.org/10.3390/w14020184

[34]

Shivappa Masalvad, S., Patil, C., Pravalika, A., Katageri, B., Bekal, P., Patil, P., Hegde, N., Sahoo, U. K., & Sakare, P. K. (2023). Application of geospatial technology for the land use/land cover change assessment and future change predictions using CA Markov chain model. Environment, Development and Sustainability, 26(10), 24817-24842. https://doi.org/10.1007/s10668-023-03657-4

[35]

Son, N. T., Le Huong, H., Loc, N. D., & Phuong, T. T. (2022). Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environment, Development and Sustainability, 24(3), 3091-3109. https://doi.org/10.1007/s10668-021-01295-2

[36]

Sun, R., Chen, S., & Su, H. (2021). Climate dynamics of the spatiotemporal changes of vegetation NDVI in Northern China from 1982 to 2015. Remote Sensing, 13(2), 187. https://doi.org/10.3390/rs13020187

[37]

Takele, G. S., Gebrie, G. S., Gebremariam, A. G., & Engida, A. N. (2022). Future climate change and impacts on water resources in the Upper Blue Nile basin. Journal of Water and Climate Change, 13(2), 908-925. https://doi.org/10.2166/wcc.2021.235

[38]

Tasgara, T. D., & Kumar, B. (2023). Assessment of land use/land cover change impact on streamflow: A case study over upper Guder Catchment, Ethiopia. Sustainable Water Resources Management, 9(1), 6. https://doi.org/10.1007/s40899-022-00783-1

[39]

Taye, M., Sahlu, D., Zaitchik, B. F., & Neka, M. (2020). Evaluation of satellite rainfall estimates for meteorological drought analysis over the upper Blue Nile basin, Ethiopia. Geosciences (Switzerland), 10(9), 1-22. https://doi.org/10.3390/geosciences10090352

[40]

Tedla, M. G., Rasmy, M., Tamakawa, K., Selvarajah, H., & Koike, T. (2022). Assessment of climate change impacts for balancing transboundary water resources development in the Blue Nile Basin. Sustainability (Switzerland), 14(22), 15438. https://doi.org/10.3390/su142215438

[41]

Teklay, A., Dile, Y. T., Asfaw, D. H., Bayabil, H. K., & Sisay, K. (2021). Impacts of climate and land use change on hydrological response in Gumara watershed, Ethiopia. Ecohydrology & Hydrobiology, 21(2), 315-332. https://doi.org/10.1016/j.ecohyd.2020.12.001

[42]

Teshome, D. S., Leta, M. K., Taddese, H., Moshe, A., Tolessa, T., Ayele, G. T., & You, S. (2023). Watershed hydrological responses to land cover changes at Muger watershed, upper Blue Nile River Basin, Ethiopia. Water (Switzerland), 15(14), 1-19. https://doi.org/10.3390/w15142533

[43]

Teshome, D. S., Moisa, M. B., Gemeda, D. O., & You, S. (2022). Effect of land use-land cover change on soil erosion and sediment yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia. Land, 11(12), 2173. https://doi.org/10.3390/land11122173

[44]

Tigabu, T. B., Wagner, P. D., Hörmann, G., Kiesel, J., & Fohrer, N. (2021). Climate change impacts on the water and groundwater resources of the Lake Tana basin, Ethiopia. Journal of Water and Climate Change, 12(5), 1544-1563. https://doi.org/10.2166/wcc.2020.126

[45]

Wang, Y., Mao, Z., Xin, Z., Liu, X., Li, Z., Dong, Y., & Deng, L. (2024). Assessing the efficacy of pixel-level fusion techniques for ultra-high-resolution imagery: A case study of BJ-3A. Sensors, 24(5), 1410. https://doi.org/10.3390/s24051410

[46]

Weslati, O., Bouaziz, S., & Sarbeji, M. M. (2023). Modelling and assessing the spatiotemporal changes to future land use change scenarios using remote sensing and CA-Markov model in the Mellegue catchment. Journal of the Indian Society of Remote Sensing, 51(1), 9-29. https://doi.org/10.1007/s12524-022-01618-4

[47]

Wubaye, G. B., Gashaw, T., Worqlul, A. W., Dile, Y. T., Taye, M. T., Haileslassie, A., Zaitchik, B., Birhan, D. A., Adgo, E., Mohammed, J. A., Lebeza, T. M., Bantider, A., Seid, A., & Srinivasan, R. (2023). Trends in rainfall and temperature extremes in Ethiopia: Station and agro-ecological zone levels of analysis. Atmosphere, 14(3), 483. https://doi.org/10.3390/atmos14030483

[48]

Wudineh, F. A. (2023). Land-use and land-cover change and its impact on flood hazard occurrence in Wabi Shebele River Basin of Ethiopia. Hydrology Research, 54(6), 756-769. https://doi.org/10.2166/nh.2023.121

[49]

Wyss, D., Negussie, K., Staacke, A., Karnagel, A., Engelhardt, M., & Kappas, M. (2022). A comparative analysis of MODIS-derived drought indices for Northern and Central Namibia. African Journal of Environmental Science and Technology, 16(5), 173-191. https://doi.org/10.5897/ajest2022.3096

[50]

Yang, T. (2020). A general overview of the risk-reduction strategies for floods and droughts. Sustainability, 12(7), 2687.

[51]

Yeneneh, N., Elias, E., & Feyisa, G. L. (2022). Quantify soil erosion and sediment export n response to land use/cover change n the Suha watershed, northwestern highlands of Ethiopia: Implications for watershed management. Environmental Systems Research, 11(1), 20. https://doi.org/10.1186/s40068-022-00265-5

[52]

Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3(7), 477-493. https://doi.org/10.1038/s43017-022-00298-5

[53]

Zhang, L., Wang, C., Liang, G., Cui, Y., & Zhang, Q. (2020). Influence of land use change on hydrological cycle: Application of SWAT to Su-Mi-Huai area in Beijing, China. Water (Switzerland), 12(11), 1-17. https://doi.org/10.3390/w12113164

[54]

Zheng, X., Maidment, D. R., Tarboton, D. G., Liu, Y. Y., & Passalacqua, P. (2018). GeoFlood: Large-scale flood inundation mapping based on high-resolution terrain analysis. Water Resources Research, 54(12), 10,013-10,033. https://doi.org/10.1029/2018WR023457

[55]

Zouré, C. O., Kiema, A., Yonaba, R., & Minoungou, B. (2023). Unravelling the impacts of climate variability on surface runoff in the Mouhoun River Catchment (West Africa). Land, 12(11), 2017. https://doi.org/10.3390/land12112017

RIGHTS & PERMISSIONS

2025 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF

1

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/