Spatiotemporal patterns and driving factors for vegetation growth status in the upper reaches of the Yellow River

Xiaolong Wang , Yongde Gan , Yangwen Jia , Ziqi Su , Jianhua Wang , Chenhui Ma , Zhaolin Zhang , Huan Liu

River ›› 2025, Vol. 4 ›› Issue (3) : 311 -329.

PDF
River ›› 2025, Vol. 4 ›› Issue (3) : 311 -329. DOI: 10.1002/rvr2.70009
RESEARCH ARTICLE

Spatiotemporal patterns and driving factors for vegetation growth status in the upper reaches of the Yellow River

Author information +
History +
PDF

Abstract

The impact of climate change on vegetation ecosystems is a prominent focus in global climate change research. The climate change affects vegetation growth and ecosystem stability in the upper reaches of the Yellow River (UYR). However, the spatiotemporal patterns and driving mechanisms of vegetation growth status (VGS) in the region remain poorly understood. Based on the hydrological model PLS, an innovative WEP-CHC model was developed by integrating regional environmental and vegetation growth characteristics. Furthermore, combined with the PLS-SEM model and other methods, this study systematically investigated the spatiotemporal patterns and driving mechanisms of VGS in the UYR. The results indicated that: ① VGS exhibited significant spatiotemporal variation trends within the study area. In the study period of 1970–2020, the GPP onset time was significantly advanced (p < 0.05) while the GPP peak value was significantly increased. Spatial analysis revealed significant spatial complexity in the GPP onset time and peak values across the region. ② Soil freeze-thaw conditions significantly influenced VGS (p < 0.05). The complete thawing time of permafrost was closely coincided with the GPP onset time, with a correlation coefficient exceeding 0.84. After controlling soil freeze-thaw effects using partial correlation analysis, it was found that better initial soil hydrothermal conditions would lead to better VGS; ③ The model constructed with annual hydrothermal conditions (AHC), soil freeze-thaw period (SFTP), vegetation growth season (VGS), initial soil hydrothermal conditions (ISHC), and annual solar radiation conditions (ASRC), demonstrated good explanatory power for vegetation growth. The R2 values of PLS-SEM were above 0.76 in all five subregions. However, their effects on VGS varied significantly across subregions. Overall, AHC and SFTP were the dominant factors in all subregions. Furthermore, the impacts of ISHC and VGC were statistically insignificant, whereas the effects of ASRC exhibited high complexity. This study not only provides new insights into the current state of hydrological-ecological coupling in the UYR but also offers a new tool for ecological conservation and sustainable water management in other cold regions and similar watersheds worldwide.

Keywords

driving factors / ecological hydrological model / GPP / spatiotemporal variation / vegetation growth status

Cite this article

Download citation ▾
Xiaolong Wang, Yongde Gan, Yangwen Jia, Ziqi Su, Jianhua Wang, Chenhui Ma, Zhaolin Zhang, Huan Liu. Spatiotemporal patterns and driving factors for vegetation growth status in the upper reaches of the Yellow River. River, 2025, 4(3): 311-329 DOI:10.1002/rvr2.70009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali, A. A., Xu, C., Rogers, A., Fisher, R. A., Wullschleger, S. D., Massoud, E. C., Vrugt, J. A., Muss, J. D., McDowell, N. G., Fisher, J. B., Reich, P. B., & Wilson, C. J. (2016). A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geoscientific Model Development, 9(2), 587-606. https://doi.org/10.5194/gmd-9-587-2016

[2]

Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J., Reyer, C. P. O., Sabaté, S., Sanders, T. G. M., & Hartig, F. (2020). Towards a new generation of trait-flexible vegetation models. Trends in Ecology & Evolution, 35(3), 191-205. https://doi.org/10.1016/j.tree.2019.11.006

[3]

Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1), 43-69. https://doi.org/10.1080/02626667909491834

[4]

Boli, C., Siqiong, L., Shihua, L., Yu, Z., & Di, M. (2014). Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Climate Research, 59(3), 243-257. https://doi.org/10.3354/cr01217

[5]

Bonan, G. B. (1996). Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide. Technical note. https://www.osti.gov/biblio/442360

[6]

Cao, R., Jiang, W., Yuan, L., Wang, W., Lv, Z., & Chen, Z. (2014). Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010. Journal of Geographical Sciences, 24(6), 963-979. https://doi.org/10.1007/s11442-014-1131-1

[7]

Chen, J. M., Chen, X., Ju, W., & Geng, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305(1–4), 15-39. https://doi.org/10.1016/j.jhydrol.2004.08.029

[8]

Chen, Y., & Xu, E. (2023). The spatiotemporal change in land cover and discrepancies within different countries on the Qinghai–Tibet plateau over a recent 30-year period. Land, 12(9), 1797. https://doi.org/10.3390/land12091797

[9]

Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2), 107-136. https://doi.org/10.1016/0168-1923(91)90002-8

[10]

Di Ma, S. L., Dong Lin, G., Shi Hua, L., Xian Hong, M., Bo Li, C., & Li Hui, L. (2021). Simulated effect of soil freeze-thaw process on surface hydrologic and thermal fluxes in frozen ground region of the Northern Hemisphere. Sciences in Cold and Arid Regions, 13(1), 18-29. https://doi.org/10.3724/sp.J.1226.2021.20059

[11]

Du, J., Shu, J., & Liu, C. (2012). Variation characteristics of reference crop evapotranspiration and its responses to climate change in upstream areas of Yellow River basin. Transactions of the Chinese Society of Agricultural Engineering, 28(12), 92-100.

[12]

Du, Z., Cai, Y., Wang, X., Yan, Y., Lu, X., & Liu, S. (2014). Research progress on the effects of soil freeze-thaw on plant physiology and ecology. Chinese Journal of Eco-Agriculture, 22(1), 1-9. https://doi.org/10.3724/sp.J.1011.2014.30941

[13]

Fan, D., Zhu, W., Zheng, Z., Zhang, D., Pan, Y., Jiang, N., & Zhou, X. (2015). Change In the green-up dates for Quercus mongolica in Northeast China and its climate-driven mechanism from 1962 to 2012. PLoS One, 10(6), e0130516. https://doi.org/10.1371/journal.pone.0130516

[14]

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.

[15]

Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brännström, Å., Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., Loreau, M., Wang, H., Mäkelä, A., Rebel, K. T., Meron, E., Schymanski, S. J., Rovenskaya, E., Stocker, B. D., Zaehle, S., Manzoni, S., … Prentice, I. C. (2020). Organizing principles for vegetation dynamics. Nature Plants, 6(5), 444-453. https://doi.org/10.1038/s41477-020-0655-x

[16]

Gan, Y., Li, Q., Liu, H., Wang, X., Jia, Y., Wu, Y., & Zhou, Z. (2024). Construction and verification of distributed hydrothermal coupling model in the source area of the Yangtze River. Journal of Hydrology: Regional Studies, 56, 102057. https://doi.org/10.1016/j.ejrh.2024.102057

[17]

Gao, J., Jiao, K., Wu, S., Ma, D., Zhao, D., Yin, Y., & Dai, E. (2017). Past and future effects of climate change on spatially heterogeneous vegetation activity in China. Earth's Future, 5(7), 679-692. https://doi.org/10.1002/2017ef000573

[18]

Govind, A., Chen, J. M., Margolis, H., Ju, W., Sonnentag, O., & Giasson, M.-A. (2009). A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America. Journal of Hydrology, 367(3–4), 200-216. https://doi.org/10.1016/j.jhydrol.2009.01.006

[19]

Guo, W., Ma, Z., & Yao, Y. (2003). Regional characteristics of soil moisture evolution in Northern China over the recent 50 years. Acta Geographica Sinica S1, 83-90. (in Chinese)

[20]

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2014). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/mtp1069-6679190202

[21]

He, M., Ju, W., Zhou, Y., Chen, J., He, H., Wang, S., Wang, H., Guan, D., Yan, J., Li, Y., Hao, Y., & Zhao, F. (2013). Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agricultural and Forest Meteorology, 173, 28-39. https://doi.org/10.1016/j.agrformet.2013.01.003

[22]

Immerzeel, W. W., van Beek, L. P. H., & Bierkens, M. F. P. (2010). Climate change will affect the Asian water towers. Science, 328(5984), 1382-1385. https://doi.org/10.1126/science.1183188

[23]

Jiao, K. W., Gao, J. B., Wu, S. H., & Hou, W. J. (2018). Research progress on the response processes of vegetation activity to climate change. Acta Ecologica Sinica, 38(6), 2229-2238. (in Chinese)

[24]

Jia, Y., Ni, G., Kawahara, Y., & Suetsugi, T. (2001). Development of WEP model and its application to an urban watershed. Hydrological Processes, 15(11), 2175-2194. https://doi.org/10.1002/hyp.275

[25]

Jiao, S., Li, J., Li, Y., Xu, Z., Kong, B., Li, Y., & Shen, Y. (2020). Variation of soil organic carbon and physical properties in relation to land uses in the Yellow River Delta, China. Scientific Reports, 10(1), 20317. https://doi.org/10.1038/s41598-020-77303-8

[26]

Kong, D., Zhang, Q., Huang, W., & Gu, X. (2017). Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geographica Sinica, 72, 39-52. (in Chinese)

[27]

Li, J., Zhou, Z., Wang, H., Liu, J., Jia, Y., Hu, P., & Xu, C.-Y. (2019). Development of WEP-COR model to simulate land surface water and energy budgets in a cold region. Hydrology Research, 50(1), 99-116. https://doi.org/10.2166/nh.2017.032

[28]

Li, S., Zhang, X., Lu, Z., Ni, J., & Lu, J. (2024). Progress of vegetation modelling and future research prospects. Science China Earth Sciences, 67(9), 2718-2738. https://doi.org/10.1007/s11430-023-1367-1

[29]

Liu, S., Zhou, Z., Liu, J., Li, J., Wang, P., Li, C., Xie, X., Jia, Y., & Wang, H. (2022). Analysis of the runoff component variation mechanisms in the cold region of Northeastern China under climate change. Water, 14(19), 3170. https://doi.org/10.3390/w14193170

[30]

Liu, X., Chen, Y., Li, Z., Li, Y., Zhang, Q., & Zan, M. (2021). Driving forces of the changes In vegetation phenology in the Qinghai–Tibet Plateau. Remote Sensing, 13(23), 4952. https://doi.org/10.3390/rs13234952

[31]

Lu, W., Tan, Z., & Liu, Z. (2021). Study on estimation method of photosynthetic effective radiation based on sunshine hours. Journal of Meteorological Research and Application, 42(04), 56-61.

[32]

Luo, J., Liu, X., Yang, J., Liu, Y., & Zhou, J. (2018). Variation in plant functional groups indicates land degradation on the Tibetan Plateau. Scientific Reports, 8(1), 17606. https://doi.org/10.1038/s41598-018-36028-5

[33]

Ma, L., Xia, H., & Meng, Q. (2019). Spatiotemporal variability of asymmetric daytime and night-time warming and its effects on vegetation in the Yellow River Basin from 1982 to 2015. Sensors, 19(8), 1832. https://doi.org/10.3390/s19081832

[34]

Ma, L., Xia, H., Sun, J., Wang, H., Feng, G., & Qin, F. (2018). Spatial–Temporal variability of hydrothermal climate conditions in the Yellow River Basin from 1957 to 2015. Atmosphere, 9(11), 433. https://doi.org/10.3390/atmos9110433

[35]

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., & Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17(6), 2134-2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x

[36]

Memon, M. A., T, R., Cheah, J.-H., Ting, H., Chuah, F., & Cham, T. H. (2021). PLS-SEM statistical programs: A review. Journal of Applied Structural Equation Modeling, 5(1), i-xiv. https://doi.org/10.47263/jasem.5(1)06

[37]

Menzel, A., Sparks, T. H., Estrella, N., & Roy, D. B. (2006). Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography, 15(5), 498-504. https://doi.org/10.1111/j.1466-822X.2006.00247.x

[38]

Mo, X., Liu, S., Lin, Z., & Zhao, W. (2004). Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 285(1–4), 125-142. https://doi.org/10.1016/j.jhydrol.2003.08.013

[39]

Nicoll, T., Brierley, G., & Yu, G. (2013). A broad overview of landscape diversity of the Yellow River source zone. Journal of Geographical Sciences, 23(5), 793-816. https://doi.org/10.1007/s11442-013-1045-3

[40]

Pei, Z. Y., Ouyang, H., Zhou, C. P., & Xu, X. L. (2009). Carbon balance in an Alpine Steppe in the Qinghai-Tibet Plateau. Journal of Integrative Plant Biology, 51(5), 521-526. https://doi.org/10.1111/j.1744-7909.2009.00813.x

[41]

Pritchard, H. D. (2019). Asia's shrinking glaciers protect large populations from drought stress. Nature, 569(7758), 649-654. https://doi.org/10.1038/s41586-019-1240-1

[42]

Qin, Y., Yang, D., Gao, B., Wang, T., Chen, J., Chen, Y., Wang, Y., & Zheng, G. (2017). Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Science of the Total Environment, 605–606, 830-841. https://doi.org/10.1016/j.scitotenv.2017.06.188

[43]

Qingling, S., Chen, G., Li, B., Zhu, J., Chen, X., & Yuan, W. (2023). Multiple factors induce temporal shifts in herbaceous plant leaf senescence dates on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 334, 109441. https://doi.org/10.1016/j.agrformet.2023.109441

[44]

Reed, C. B. (2006). Trend analysis of time-series phenology of North America derived from satellite data. GIScience & Remote Sensing, 43(01), 24-38.

[45]

Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125-154. https://doi.org/10.1016/0304-3800(88)90112-3

[46]

Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229-232. https://doi.org/10.1038/nature16986

[47]

Shi, X., Yang, D., Zhou, S., Li, H., Zeng, S., Yin, C., & Yang, M. (2024). Analysis of spatiotemporal variation characteristics and influencing factors of grassland vegetation coverage in the Qinghai–Tibet Plateau from 2000 to 2023 based on MODIS data. Land, 13(12), 2127. https://doi.org/10.3390/land13122127

[48]

Shrestha, P., Kurtz, W., Vogel, G., Schulz, J. P., Sulis, M., Hendricks Franssen, H. J., Kollet, S., & Simmer, C. (2018). Connection between root zone soil moisture and surface energy flux partitioning using modeling, observations, and data assimilation for a temperate grassland site in Germany. Journal of Geophysical Research: Biogeosciences, 123(9), 2839-2862. https://doi.org/10.1029/2016jg003753

[49]

Siad, S. M., Iacobellis, V., Zdruli, P., Gioia, A., Stavi, I., & Hoogenboom, G. (2019). A review of coupled hydrologic and crop growth models. Agricultural Water Management, 224, 105746. https://doi.org/10.1016/j.agwat.2019.105746

[50]

Wang, D. L., Feng, H. M., Zhang, B. Z., Wei, Z., & Tian, Y. L. (2022). Quantifying the impacts of climate change and vegetation change on decreased runoff in China's Yellow River basin. Ecohydrology & Hydrobiology, 22(2), 310-322. https://doi.org/10.1016/j.ecohyd.2021.10.002

[51]

Wang, H., Liu, X., Zhang, X., Wang, P., Lin, H., & Yu, L. (2018). Spatiotemporal crop NDVI responses to climatic factors in mainland China. International Journal of Remote Sensing, 40(1), 89-103. https://doi.org/10.1080/01431161.2018.1500725

[52]

Wang, H., Wu, X., Bi, N., Li, S., Yuan, P., Wang, A., Syvitski, J. P. M., Saito, Y., Yang, Z., Liu, S., & Nittrouer, J. (2017). Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review. Global and Planetary Change, 157, 93-113. https://doi.org/10.1016/j.gloplacha.2017.08.005

[53]

Wang, K., Zhang, L., Qiu, Y., Ji, L., Tian, F., Wang, C., & Wang, Z. (2015). Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. International Journal of Digital Earth, 8(1), 58-75. https://doi.org/10.1080/17538947.2013.848946

[54]

Wang, L., Zhu, Q., Zhang, J., Liu, J., Zhu, C., & Qu, L. (2023). Vegetation dynamics alter the hydrological interconnections between upper and mid-lower reaches of the Yellow River Basin, China. Ecological Indicators, 148, 110083. https://doi.org/10.1016/j.ecolind.2023.110083

[55]

Wang, X., Jin, R., Du, P., & Liang, H. (2018). Trend of surface freeze-thaw cycles and vegetation green-up date and their response to climate change on the Qinghai-Tibet Plateau. National Remote Sensing Bulletin, 22(3), 508-520. https://doi.org/10.11834/jrs.20187153

[56]

Wang, Y., Kang, L., & Wang, G. (2004). Precipitation variations in the upper stream of the Yellow River and their effects on runoff in the last 50 years. Yellow River, 46(2), 5-7. (in Chinese)

[57]

Yan, W., Zhong, Y., & Shangguan, Z. (2017). Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Global Change Biology, 23(9), 3781-3793. https://doi.org/10.1111/gcb.13654

[58]

Yang, L., Liu L. N., & Sun, S. B. (2023). The dominated environmental factors of vegetation change on the Qinghai-Tibet Plateau from 1982 to 2015. Acta Ecologica Sinica, 43(2), 744-755. (in Chinese)

[59]

Yang, D., Yang, Y., Gao, G., Huang, J., & Jiang, E. (2021). Water cycle and soil-water coupling processes in the Yellow River Basin. Bulletin of National Natural Science Foundation of China, 35(04), 544-551.

[60]

Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., & Zou, P. (2015). Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 163, 91-110. https://doi.org/10.1016/j.rse.2015.03.008

[61]

Zhao, L., Dai, A., & Dong, B. (2018). Changes in global vegetation activity and its driving factors during 1982–2013. Agricultural and Forest Meteorology, 249, 198-209. https://doi.org/10.1016/j.agrformet.2017.11.013

[62]

Zhou, Y. (2020). Analysis of controlling factors for vegetation productivity in Northeast China. Acta Geographica Sinica, 75(1), 53-67.

RIGHTS & PERMISSIONS

2025 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF

3

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/