Forever but not everywhere? Unexpected non-detection of per- and polyfluoroalkyl substances (PFAS) in major Philippines rivers

Patrick Byrne , Emma Biles , Loucel Cui , Richard Williams , Decibel V. Faustino-Eslava , Laura Quick , Manilyn Casa , Francis Ian P. Gonzalvo , Maria Regina V. Regalado , Kim Bryan N. Cabrera , Kit Felian C. Tenio , Jenielyn Padrones , Juan Miguel Guotana , Karen A. Hudson-Edwards , Grigorios Vasilopoulos , Thomas J. Coulthard , Cecilia Tortajada , Jessica D. Villanueva-Peyraube , Janice B. Sevilla-Nastor , Justine Perry T. Domingo , David Megson

River ›› 2025, Vol. 4 ›› Issue (1) : 29 -35.

PDF (2375KB)
River ›› 2025, Vol. 4 ›› Issue (1) : 29 -35. DOI: 10.1002/rvr2.70002
PERSPECTIVE

Forever but not everywhere? Unexpected non-detection of per- and polyfluoroalkyl substances (PFAS) in major Philippines rivers

Author information +
History +
PDF (2375KB)

Abstract

Recent studies suggest per- and polyfluoroalkyl substances (PFAS) are ubiquitous in rivers worldwide. In the Asia-Pacific region, the frequency of PFAS detection in rivers is increasing. However, the overwhelming majority of studies and data represent high population and urbanized river catchments. In this study, we investigate PFAS occurrence in major Philippines river systems characterized by both high and low population densities. In the Pasig Laguna de Bay River, which drains a major urban conurbation, we detected PFAS at concentrations typical of global rivers. Unexpectedly, we did not detect PFAS in river water or sediments in low population density river catchments, despite our instrument detection limits being lower than the vast majority of river concentrations reported worldwide. We hypothesize that septic tanks, as the dominant wastewater treatment practice in Philippines catchments, may control the release of PFAS into groundwater and rivers in the Philippines. However, no groundwater PFAS data currently exist to validate this supposition. More broadly, our findings highlight the need for more representative PFAS sampling and analysis in rivers to more accurately represent regional and global detection frequencies and trends.

Keywords

chemical pollution / detection limits / PFAS / Philippines / population density / wastewater treatment

Cite this article

Download citation ▾
Patrick Byrne, Emma Biles, Loucel Cui, Richard Williams, Decibel V. Faustino-Eslava, Laura Quick, Manilyn Casa, Francis Ian P. Gonzalvo, Maria Regina V. Regalado, Kim Bryan N. Cabrera, Kit Felian C. Tenio, Jenielyn Padrones, Juan Miguel Guotana, Karen A. Hudson-Edwards, Grigorios Vasilopoulos, Thomas J. Coulthard, Cecilia Tortajada, Jessica D. Villanueva-Peyraube, Janice B. Sevilla-Nastor, Justine Perry T. Domingo, David Megson. Forever but not everywhere? Unexpected non-detection of per- and polyfluoroalkyl substances (PFAS) in major Philippines rivers. River, 2025, 4(1): 29-35 DOI:10.1002/rvr2.70002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abascal, E., Gómez-Coma, L., Ortiz, I., & Ortiz, A. (2022). Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Science of the Total Environment, 810, 152233.

[2]

Ackerman Grunfeld, D., Gilbert, D., Hou, J., Jones, A. M., Lee, M. J., Kibbey, T. C. G., & O’Carroll, D. M. (2024). Underestimated burden of per- and polyfluoroalkyl substances in global surface waters and groundwaters. Nature Geoscience, 17, 340–346.

[3]

ALS Laboratories Ltd. (2022a).The Determination of Per- and Polyfluorinated Substances (PFAS) in Water Samples by LC-MS/MS. https://www.alsenvironmental.co.uk/media-uk/method_statements/hawarden/waste-water-organics/tm337—pfas-in-waters-method-summary_9_.pdf

[4]

ALS Laboratories Ltd. (2022b).The Determination of Per- and Polyfluorinated Substances (PFAS) in Soils by LC-MS/MS. https://www.alsenvironmental.co.uk/media-uk/method_statements/hawarden/contaminated-land-organics/tm338—pfas-in-soils-method-summary_2.pdf

[5]

Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., & Binley, A. M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8, 1416.

[6]

Ateia, M., Chiang, D., Cashman, M., & Acheson, C. (2023). Total oxidizable precursor (TOP) assay─best practices, capabilities and limitations for PFAS site investigation and remediation. Environmental Science & Technology Letters, 10, 292–301.

[7]

Baluyot, J. C., Reyes, E. M., & Velarde, M. C. (2021). Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia’s freshwater resources. Environmental Research, 197, 111122.

[8]

Boothroyd, R. J., Williams, R. D., Hoey, T. B., Barrett, B., & Prasojo, O. A. (2021). Applications of google earth engine in fluvial geomorphology for detecting river channel change. WIREs Water, 8, e21496.

[9]

Boothroyd, R. J., Williams, R. D., Hoey, T. B., MacDonell, C., Tolentino, P. L. M., Quick, L., Guardian, E. L., Reyes, J. C. M. O., Sabillo, C. J., Perez, J. E. G., & David, C. P. C. (2023). National-scale geodatabase of catchment characteristics in the Philippines for river management applications. PLoS One, 18, e0281933.

[10]

Byrne, P., Binley, A., Heathwaite, A. L., Ullah, S., Heppell, C. M., Lansdown, K., Zhang, H., Trimmer, M., & Keenan, P. (2014). Control of river stage on the reactive chemistry of the hyporheic zone. Hydrological Processes, 28, 4766–4779.

[11]

Byrne, P., Mayes, W. M., James, A. L., Comber, S., Biles, E., Riley, A. L., & Runkel, R. L. (2024). PFAS river export analysis highlights the urgent need for catchment-scale mass loading data. Environmental Science & Technology Letters, 11, 266–272.

[12]

Calore, F., Guolo, P. P., Wu, J., Xu, Q., Lu, J., & Marcomini, A. (2023). Legacy and novel PFASs in wastewater, natural water, and drinking water: occurrence in Western countries vs China. Emerging Contaminants, 9, 100228.

[13]

Cathey, A. L., Nguyen, V. K., Colacino, J. A., Woodruff, T. J., Reynolds, P., & Aung, M. T. (2023). Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. Journal of Exposure Science & Environmental Epidemiology, 33, 687–698.

[14]

Comber, S. D. W., Gardner, M. J., & Ellor, B. (2020). Seasonal variation of contaminant concentrations in wastewater treatment works effluents and river waters. Environmental Technology, 41, 2716–2730.

[15]

Cousins, I. T., Johansson, J. H., Salter, M. E., Sha, B., & Scheringer, M. (2022). Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS). Environmental Science & Technology, 56, 11172–11179.

[16]

ESRI. (2024). Elevation Coverage Map. https://www.arcgis.com/home/item.html?id=3af669838f594b378f90c10f98e46a7f

[17]

Evich, M. G., Davis, M. J. B., McCord, J. P., Acrey, B., Awkerman, J. A., Knappe, D. R. U., Lindstrom, A. B., Speth, T. F., Tebes-Stevens, C., Strynar, M. J., Wang, Z., Weber, E. J., Henderson, W. M., & Washington, J. W. (2022). Per- and polyfluoroalkyl substances in the environment. Science, 375, eabg9065.

[18]

van Gerwen, M., Colicino, E., Guan, H., Dolios, G., Nadkarni, G. N., Vermeulen, R. C. H., Wolff, M. S., Arora, M., Genden, E. M., & Petrick, L. M. (2023). Per- and polyfluoroalkyl substances (PFAS) exposure and thyroid cancer risk. EBioMedicine, 97, 104831.

[19]

Global Administrative Areas. (2022). GADM database of Global Administrative Areas, version 4.1. www.gadm.org

[20]

Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Trier, X., & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22, 2345–2373.

[21]

Grandjean, P., Meddis, A., Nielsen, F., Sjödin, A., Hjorth, M. F., Astrup, A., & Budtz-Jørgensen, E. (2023). Weight loss relapse associated with exposure to perfluorinated alkylate substances. Obesity, 31, 1686–1696.

[22]

Guardian, M. G. E., Boongaling, E. G., Bernardo-Boongaling, V. R. R., Gamonchuang, J., Boontongto, T., Burakham, R., Arnnok, P., & Aga, D. S. (2020). Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two asian countries. Chemosphere, 256, 127115.

[23]

Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K., Joyce, R., & Xie, P. (2014). Integrated Multi-satellitE Retrievals for GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center. Accessed 15 January 2024. ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/

[24]

Jalilov, S.-M. (2018). Value of clean water resources: estimating the water quality improvement in metro Manila, Philippines. Resources, 7, 7010001.

[25]

Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of the Total Environment, 809, 151003.

[26]

NAMRIA. (2020). Land Cover, 2021. https://www.geoportal.gov.ph/

[27]

NEDA. (2021). Volume 2: Philippine Water Supply and Sanitation Master Plan. National Capital Region Water Supply and Sanitation Databook and Regional Roadmap. https://neda.gov.ph/wp-content/uploads/2021/09/16-NCR-Databook-and-Roadmap_4June2021.pdf

[28]

Ng, C., Cousins, I. T., DeWitt, J. C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Miller, M., Patton, S., Scheringer, M., Trier, X., & Wang, Z. (2021). Addressing urgent questions for PFAS in the 21st century. Environmental Science & Technology, 55, 12755–12765.

[29]

Philippine Statistics Authority. (2023). Philippine Standard Geographic Code. (PSGC) PSGC 4Q 2023 Publication Datafile 2023. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fpsa.gov.ph%2Fsystem%2Ffiles%2Fscd%2FPSGC-4Q-2023-Publication-Datafile.xlsx&wdOrigin=BROWSELINK

[30]

Pitter, G., Zare Jeddi, M., Barbieri, G., Gion, M., Fabricio, A. S. C., Daprà F., Russo, F., Fletcher, T., & Canova, C. (2020). Perfluoroalkyl substances are associated with elevated blood pressure and hypertension in highly exposed young adults. Environmental Health, 19, 102.

[31]

River Basin Control Office. Formulation of Integrated River Basin Management and Development Master Plan (IRBMDDMP) for Apayao-Abulug River Basin (Final Report Executive Summary) 2014.

[32]

Schaider, L. A., Ackerman, J. M., & Rudel, R. A. (2016). Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Science of the Total Environment, 547, 470–481.

[33]

Sevilla-Nastor, J., Mozo, M. J., & Villanueva-Peyraube, J. (2022). Determination of perfluorooctanoic acid and perfluorooctane sulfonate water quality criteria for ecosystem protection of laguna lake, Philippines. Journal of Environmental Science and Management, 25, 61–73.

[34]

Sheng, N., Cui, R., Wang, J., Guo, Y., Wang, J., & Dai, J. (2018). Cytotoxicity of novel fluorinated alternatives to long-chain perfluoroalkyl substances to human liver cell line and their binding capacity to human liver fatty acid binding protein. Archives of Toxicology, 92, 359–369.

[35]

Silver, M., Phelps, W., Masarik, K., Burke, K., Zhang, C., Schwartz, A., Wang, M., Nitka, A. L., Schutz, J., Trainor, T., Washington, J. W., & Rheineck, B. D. (2023). Prevalence and source tracing of PFAS in shallow groundwater used for drinking water in Wisconsin, USA. Environmental Science & Technology, 57, 17415–17426.

[36]

Smalling, K. L., Romanok, K. M., Bradley, P. M., Morriss, M. C., Gray, J. L., Kanagy, L. K., Gordon, S. E., Williams, B. M., Breitmeyer, S. E., Jones, D. K., DeCicco, L. A., Eagles-Smith, C. A., & Wagner, T. (2023). Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environment International, 178, 108033.

[37]

Sörengård, M., Kikuchi, J., Wiberg, K., & Ahrens, L. (2022). Spatial distribution and load of per- and polyfluoroalkyl substances (PFAS) in background soils in Sweden. Chemosphere, 295, 133944.

[38]

Tabios, III, G. Q. (2020). Water Resources Systems of the Philippines: Modeling Studies. Springer.

[39]

The World Bank Group. (2003). Philippines Environment Monitor 2003.

[40]

UNEP. (2017). Global Monitoring Plan for Persistent Organic Pollutants Under the Stockholm Convention Article 16 on Effectiveness Evaluation. http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-COP.8-INF-38.English.pdf

[41]

U.S. EPA. (2022). PFAS Structures in DSSTox. https://comptox.epa.gov/dashboard/chemical-lists/PFASSTRUCTV5

[42]

U.S. EPA. (2024). Method 1633: Analysis of Per-and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS: EPA 821-R-24-001, Washington, D.C.

[43]

World Bank and Australian Aid. (2013). East Asia and the Pacific Urban Sanitation Review: Philippines Country Study. World Bank and Australian Aid.

[44]

Zhang, S., Chen, K., Li, W., Chai, Y., Zhu, J., Chu, B., Li, N., Yan, J., Zhang, S., & Yang, Y. (2021). Varied thyroid disrupting effects of perfluorooctanoic acid (PFOA) and its novel alternatives hexafluoropropylene-oxide-dimer-acid (GenX) and ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA) in vitro. Environment International, 156, 106745.

RIGHTS & PERMISSIONS

2025 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (2375KB)

565

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/