Shifts in phytoplankton communities in inland waterways: Insights from the Beijing–Hangzhou Grand Canal, China

Xueru Mao , Lin Zhu , Boyi Liu , Chenjun Zeng , Huijian Yang , Wenqing Shi

River ›› 2025, Vol. 4 ›› Issue (1) : 36 -43.

PDF (944KB)
River ›› 2025, Vol. 4 ›› Issue (1) : 36 -43. DOI: 10.1002/rvr2.116
RESEARCH ARTICLE

Shifts in phytoplankton communities in inland waterways: Insights from the Beijing–Hangzhou Grand Canal, China

Author information +
History +
PDF (944KB)

Abstract

Phytoplankton play a crucial role in maintaining the health of river ecosystems, and their communities are closely linked to river hydrodynamics. In inland waterways, disturbances generated by ship propellers alter flow dynamics and may affect phytoplankton communities. To clarify it, phytoplankton communities in the Zhenjiang section of the Beijing–Hangzhou Grand Canal (BHGC) in China, the world’s longest canal, were studied and compared them with its undisturbed tributaries. The results revealed major alternations in seasonal patterns of phytoplankton communities in the BHGC, shifting the peak of phytoplankton density from spring to autumn and the lowest diversity from summer to autumn. Ship disturbances increased water turbidity and created optimal N/P ratios, which provided Cyanobacteria with a competitive advantage in autumn. The proliferation of Cyanobacteria resulted in a phytoplankton density in the BHGC, exceeding that in the tributaries by more than tenfold, accompanied by a decrease in diversity to its lowest level. Due to habitat alterations, functional groups emerged that are resilient to strong disturbances and high turbidity. The findings add to the understanding of the impact of ship traffic on river ecosystems.

Keywords

functional group / inland waterway / N/P ratio / phytoplankton / ship traffic / turbidity

Cite this article

Download citation ▾
Xueru Mao, Lin Zhu, Boyi Liu, Chenjun Zeng, Huijian Yang, Wenqing Shi. Shifts in phytoplankton communities in inland waterways: Insights from the Beijing–Hangzhou Grand Canal, China. River, 2025, 4(1): 36-43 DOI:10.1002/rvr2.116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Bader, D., Rayan, R., Mahmood, H., Al-Hasan, R., Bobby, L., & Eliyas, M. (2011). Comparison of the seasonal diversity of planktonic Cyanobacteria in clear and turbid shallow coastal waters of Kuwait using culture-independent techniques. Kuwait Journal of Science & Engineering, 38(2A), 163–183.

[2]

Becker, V., Caputo, L., Ordóñez, J., Marcé R., Armengol, J., Crossetti, L. O., & Huszar, V. L. M. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 44 (11), 3345–3354.

[3]

Bogard, M. J., Vogt, R. J., Hayes, N. M., & Leavitt, P. R. (2020). Unabated nitrogen pollution favors growth of toxic Cyanobacteria over Chlorophytes in most hypereutrophic lakes. Environmental Science & Technology, 54 (6), 3219–3227.

[4]

Brand, C., Tran, M., & Anable, J. (2012). The UK transport carbon model: An integrated life cycle approach to explore low carbon futures. Energy Policy, 41, 107–124.

[5]

Cao, J., Hou, Z., Li, Z., Chu, Z., Yang, P., & Zheng, B. (2018). Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Science of the Total Environment, 631–632, 1127–1137.

[6]

CEIC. (2023). China Waterway: Navigable Length: River. https://www.ceicdata.com.cn/zh-hans/china/waterway-navigable-length-river

[7]

Chen, Y., Li, X., Han, Z., Yang, S., Wang, Y., & Yang, D. (2008). Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang, Jiangsu Province. Journal of Geographical Sciences, 18 (3), 341–352.

[8]

Collas, F. P. L., Buijse, A. D., Van den Heuvel, L., Van Kessel, N., Schoor, M. M., Eerden, H., & Leuven, R. S. E. W. (2018). Longitudinal training dams mitigate effects of shipping on environmental conditions and fish density in the littoral zones of the river Rhine. Science of the Total Environment, 619–620, 1183–1193.

[9]

de Souza, D. G., Bueno, N. C., Bortolini, J. C., Rodrigues, L. C., Bovo-Scomparin, V. M., & de Souza Franco, G. M. (2016). Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia, 779 (1), 47–57.

[10]

Di Pane, J., Wiltshire, K. H., McLean, M., Boersma, M., & Meunier, C. L. (2022). Environmentally induced functional shifts in phytoplankton and their potential consequences for ecosystem functioning. Global Change Biology, 28 (8), 2804–2819.

[11]

Gabel, F., Lorenz, S., & Stoll, S. (2017). Effects of ship-induced waves on aquatic ecosystems. Science of the Total Environment, 601–602, 926–939.

[12]

González-Olalla, J. M., Powell, J. A., & Brahney, J. (2024). Dust storms increase the tolerance of phytoplankton to thermal and pH changes. Global Change Biology, 30(1), e17055.

[13]

Hébert, M. P., Beisner, B. E., Rautio, M., & Fussmann, G. F. (2021). Warming winters in lakes: Later ice onset promotes consumer overwintering and shapes springtime planktonic food webs. Proceedings of the National Academy of Sciences of the United States of America, 118(48):e2114840118.

[14]

Henson, S. A., Cael, B. B., Allen, S. R., & Dutkiewicz, S. (2021). Future phytoplankton diversity in a changing climate. Nature Communications, 12 (1), 5372.

[15]

Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., & Rost, B. (2018). Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nature Climate Change, 8 (6), 529–533.

[16]

Hu, H. (2006). The freshwater algae of China: systematics, taxonomy and ecology. Science Press.

[17]

Jiang, Z., Du, P., Liao, Y., Liu, Q., Chen, Q., Shou, L., Zeng, J., & Chen, J. (2019). Oyster farming control on phytoplankton bloom promoted by thermal discharge from a power plant in a eutrophic, semi-enclosed bay. Water Research, 159, 1–9.

[18]

Jin, X., & Tu, Q. (1990). The standard methods for observation and analysis in lake eutrophication (p. 240). Chinese Environmental Science Press.

[19]

Kireta, A. R., Reavie, E. D., Sgro, G. V., Angradi, T. R., Bolgrien, D. W., Hill, B. H., & Jicha, T. M. (2012). Planktonic and periphytic diatoms as indicators of stress on great rivers of the United States: Testing water quality and disturbance models. Ecological Indicators, 13 (1), 222–231.

[20]

Liu, S., Cui, Z., Zhao, Y., & Chen, N. (2022). Composition and spatial-temporal dynamics of phytoplankton community shaped by environmental selection and interactions in the Jiaozhou Bay. Water Research, 218, 118488.

[21]

Liu, B., Li, Z., Wang, J., Zhang, X., Kong, L., Zhu, L., & Shi, W. (2023). Thin boundary layer model underestimates greenhouse gas diffusion from inland waterways. Environmental Research, 233, 116472.

[22]

Liu, Z., Liu, L., Li, Y., & Li, X. (2023). Influence of urban green space landscape pattern on river water quality in a highly urbanized river network of Hangzhou city. Journal of Hydrology, 621, 129602.

[23]

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21 (4), 178–185.

[24]

Napiórkowska-Krzebietke, A., & Kobos, J. (2016). Assessment of the cell biovolume of phytoplankton widespread in coastal and inland water bodies. Water Research, 104, 532–546.

[25]

Naskar, M., Das Sarkar, S., Sahu, S. K., Gogoi, P., & Das, B. K. (2021). Impact of barge movement on phytoplankton diversity in a river: A Bayesian risk estimation framework. Journal of Environmental Management, 296, 113227.

[26]

Osborne, I. S., Hurtley, S. M., Sugden, A. M., Nusinovich, Y., Stajic, J., Stern, P., & Smith, H. J. (2021). Editors’ choice. Science, 371 (6530), 688–689.

[27]

Padisák, J., Borics, G., Grigorszky, I., & Soróczki-Pintér, É. (2006). Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia, 553, 1–14.

[28]

Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621, 1–19.

[29]

Reynolds, C. S. (1998). The state of freshwater ecology. Freshwater Biology, 39 (4), 741–753.

[30]

Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge University Press.

[31]

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24 (5), 417–428.

[32]

Ringuet, S., Sassano, L., & Johnson, Z. I. (2011). A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring. Journal of Environmental Monitoring, 13 (2), 370–376.

[33]

Strock, J. P., & Menden-Deuer, S. (2021). Temperature acclimation alters phytoplankton growth and production rates. Limnology and Oceanography, 66 (3), 740–752.

[34]

Su, X., Steinman, A. D., Xue, Q., Zhao, Y., Tang, X., & Xie, L. (2017). Temporal patterns of phyto-and bacterioplankton and their relationships with environmental factors in Lake Taihu, China. Chemosphere, 184, 299–308.

[35]

Tang, H. J., Institute of Hydrobiology, Chinese Academy of Sciences. (2002). Ecological studies on phytoplankton of the shallow, eutrophic Lake Donghu (Dotoral dissertation thesis). Institute of Hydrobiology, Chinese Academy of Sciences.

[36]

Tang, X., Wu, M., & Li, R. (2018). Phosphorus distribution and bioavailability dynamics in the mainstream water and surface sediment of the Three Gorges Reservoir between 2003 and 2010. Water Research, 145, 321–331.

[37]

Van de Waal, D. B., Gsell, A. S., Harris, T., Paerl, H. W., de Senerpont Domis, L. N., & Huisman, J. (2024). Hot summers raise public awareness of toxic cyanobacterial blooms. Water Research, 249, 120817.

[38]

Wan, Y., Huang, G., Du, H., Yang, S., Yang, W., & Li, W. (2023). Effects of waterway regulation structures on the planktonic community in the upper Yangtze River. Ecological Indicators, 155, 111049.

[39]

Wang, L., Chen, Q., Han, R., Wang, B., & Tang, X. (2017). Responses of the phytoplankton community in the Yangtze River estuary and adjacent sea areas to the impoundment of the Three Gorges Reservoir. Annales De Limnologie—International Journal of Limnology, 53, 1–10.

[40]

Wang, Y., Cai, Y., Yin, X., & Yang, Z. (2020). Succession of phytoplankton functional groups in Macau’s two shallow urban border reservoirs under multiple changing factors. Journal of Cleaner Production, 264, 121553.

[41]

Wang, Y., Chen, X., Borthwick, A. G. L., Li, T., Liu, H., Yang, S., Zheng, C., Xu, J., & Ni, J. (2020). Sustainability of global golden inland waterways. Nature Communications, 11 (1), 1553.

[42]

Wei, J., Li, Y., Chen, D., Nwankwegu, A. S., Tang, C., Bu, M., & Zhang, S. (2020). The influence of ship wave on turbulent structures and sediment exchange in large shallow Lake Taihu, China. Journal of Hydrology, 586, 124853.

[43]

Xiao, L.-J., Wang, T., Hu, R., Han, B.-P., Wang, S., Qian, X., & Padisák, J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research, 45 (16), 5099–5109.

[44]

Yan, R., Yao, J., Tian, F., & Gao, J. (2023). A novel framework for turbidity source apportionment of the urban lakeside river network. Ecological Indicators, 154, 110561.

[45]

Zhao, G., Wang, H., Li, Y., Guo, H., Ding, Y., & Pan, B. (2024). In-lake water turnover time shapes the distribution pattern of phytoplankton communities in a river-connected floodplain lake. Journal of Environmental Management, 360, 121157.

[46]

Zhou, S., Ji, B., Song, Y., Yu, S. S., Zhang, D., & Van Woensel, T. (2023). Hub-and-spoke network design for container shipping in inland waterways. Expert Systems With Applications, 223, 119850.

RIGHTS & PERMISSIONS

2025 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (944KB)

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/