Challenges and future actions on water-economy-ecology-society nexus under changing environment

Rabi Mohtar , Jing Peng , Bassel Daher , Xin He

River ›› 2024, Vol. 3 ›› Issue (4) : 337 -340.

PDF (369KB)
River ›› 2024, Vol. 3 ›› Issue (4) : 337 -340. DOI: 10.1002/rvr2.111
PERSPECTIVE

Challenges and future actions on water-economy-ecology-society nexus under changing environment

Author information +
History +
PDF (369KB)

Keywords

climate change / sustainable development / water-economy-ecology-society nexus / water security

Cite this article

Download citation ▾
Rabi Mohtar, Jing Peng, Bassel Daher, Xin He. Challenges and future actions on water-economy-ecology-society nexus under changing environment. River, 2024, 3(4): 337-340 DOI:10.1002/rvr2.111

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Apurv, T., & Cai, X. (2020). Impact of droughts on water supply in US watersheds: the role of renewable surface and groundwater resources. Earth’s Future, 8(10), e2020EF001648. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020EF001648

[2]

Beal, C. D., Stewart, R. A., & Fielding, K. (2013). A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. Journal of Cleaner Production, 60, 116-128.

[3]

Chang, L. C., Chang, F. J., Yang, S. N., Kao, I. F., Ku, Y. Y., Kuo, C. L., & Amin, I. M. Z. M. (2019). Building an intelligent hydroinformatics integration platform for regional flood inundation warning systems. Water, 11(1), 9.

[4]

Daher, B., Lee, S.-H., Kaushik, V., Blake, J., Askariyeh, M. H., Shafiezadeh, H., Zamaripa, S., & Mohtar, R. H. (2019). Towards bridging the water gap in Texas: A water-energy-food nexus approach. Science of the Total Environment, 647, 449-463.

[5]

Dargin, J., Daher, B., & Mohtar, R. H. (2019). Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Science of the Total Environment, 650, 1566-1575.

[6]

Fang, Q. X., Ma, L., Green, T. R., Yu, Q., Wang, T. D., & Ahuja, L. R. (2010). Water resources and water use efficiency in the north China plain: Current status and agronomic management options. Agricultural Water Management, 97(8), 1102-1116.

[7]

IWHR, China Institute of Water Resources and Hydropower Research (2024), River Ethics and China’s Practices. Rep.

[8]

Karimi, P., Qureshi, A. S., Bahramloo, R., & Molden, D. (2012). Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran. Agricultural Water Management, 108, 52-60.

[9]

Li, M., Singh, V. P., Fu, Q., Liu, D., Li, T., & Zhou, Y. (2021). Optimization of agricultural water-food-energy nexus in a random environment: An integrated modelling approach. Stochastic Environmental Research and Risk Assessment, 35(1), 3-19.

[10]

Loaiciga, H. A., & Doh, R. (2024). Groundwater for people and the environment: A globally threatened resource. Groundwater, 62(3), 332-340.

[11]

MWR, Ministry of Water Resources of P. R. China. (2024). Water governance in China: Perspectives of Xi Jinping. Book.

[12]

Nounkeu, C. D., Gruber, K. J., Kamgno, J., Teta, I., & Dharod, J. M. (2021). Development of water insecurity scale for rural households in Cameroon- Central Africa. Global Health Action, 14(1), 1927328. https://www.tandfonline.com/doi/full/10.1080/16549716.2021.1927328#abstract

[13]

Romero-Lankao, P., & Norton, R. (2018). Interdependencies and risk to people and critical food, energy, and water systems: 2013 flood, boulder, Colorado, USA. Earth’s Future, 6(11), 1616-1629.

[14]

UNESCO, UN-Water, World Water Assessment Programme. (2024). United Nations World Water Development Report 2024: Water for prosperity and peace. https://digitallibrary.un.org/record/4042870?v=pdf

[15]

Valencia, A., Zhang, W., Gu, L., Chang, N.-B., & Wanielista, M. P. (2022). Synergies of green building retrofit strategies for improving sustainability and resilience via a building-scale food-energy-water nexus. Resources, Conservation And Recycling, 176, 105939.

[16]

Valero, D., Cook, J., Lee, A., Browne, A. L., Ellis, R., Pancholi, V. S., & Hoolohan, C. (2023). Addressing water poverty under climate crisis: Implications for social policy. Social Policy and Society, 22(4), 747-762.

[17]

Wasko, C., Nathan, R., Stein, L., & O’Shea, D. (2021). Evidence of shorter more extreme rainfalls and increased flood variability under climate change. Journal of Hydrology, 603, 126994.

[18]

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., & Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782.

[19]

Zhang, C. Y., & Oki, T. (2023). Water pricing reform for sustainable water resources management in China’s agricultural sector. Agricultural Water Management, 275, 108045.

[20]

Zhang, P., Zhang, L., Hao, Y., Liang, S., Liu, G., Xiong, X., Yang, M., & Tang, W. (2019). Understanding the tele-coupling mechanism of urban food-energy-water nexus: Critical sources, nodes, and supply chains. Journal of Cleaner Production, 235, 297-307.

RIGHTS & PERMISSIONS

2024 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (369KB)

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/