Estimation and analysis of vegetation parameters for the water cloud model

Xiangdong Qin , Zhiguo Pang , Jingxuan Lu

River ›› 2024, Vol. 3 ›› Issue (4) : 399 -407.

PDF (1266KB)
River ›› 2024, Vol. 3 ›› Issue (4) : 399 -407. DOI: 10.1002/rvr2.103
RESEARCH ARTICLE

Estimation and analysis of vegetation parameters for the water cloud model

Author information +
History +
PDF (1266KB)

Abstract

The Water Cloud Model (WCM) plays a crucial role in active microwave soil moisture inversion applications. Empirical parameters are important factors affecting the accuracy of WCM simulation, but the current evaluation of empirical parameters only considers the forward simulation process, and insufficient consideration is given to the model inversion problem. This study proposes a new estimation method for vegetation parameters in the WCM by combining the soil backscattering model and the objective function. The effectiveness of the method is then verified using measured data. Simultaneously, this study also analyzes the factors influencing the evaluation of vegetation parameters in the WCM, resulting in the following conclusions. First, blindly utilizing vegetation parameters recommended by previous model studies is not advisable. To ensure the accuracy of the simulation, it is necessary to adjust the vegetation parameters appropriately. Second, to ensure the ability of the WCM solving both forward and inverse problems, it is advisable to consider both soil backscatter and surface backscatter simulations in the construction of the cost function. Third, soil backscatter simulations have an impact on the solution of vegetation parameters, and more accurate soil scattering models provide a better representation of the modeled vegetation. This study presents a dependable method for resolving the vegetation parameters of the WCM, thereby offering a valuable reference for the application of the model in surface parameter inversion research.

Keywords

backscattering coefficient / gradient descent algorithm / objective function / soil moisture / water cloud model

Cite this article

Download citation ▾
Xiangdong Qin, Zhiguo Pang, Jingxuan Lu. Estimation and analysis of vegetation parameters for the water cloud model. River, 2024, 3(4): 399-407 DOI:10.1002/rvr2.103

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Attema, E. P. W., & Ulaby, F. T. (1978). Vegetation modeled as a water cloud. Radio Science, 13(2), 357–364.

[2]

Bao, Y., Lin, L., Wu, S., Kwal Deng, K. A., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76–85.

[3]

Berg, A., & Sheffield, J. (2018). Climate change and drought: The soil moisture perspective. Current Climate Change Reports, 4, 180–191.

[4]

Bindlish, R., & Barros, A. P. (2001). Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sensing of Environment, 76(1), 130–137.

[5]

Chaubell, M. J., Yueh, S. H., Dunbar, R. S., Colliander, A., Chen, F., Chan, S. K., Entekhabi, D., Bindlish, R., O’Neill, P. E., Asanuma, J., Berg, A. A., Bosch, D. D., Caldwell, T., Cosh, M. H., Holifield Collins, C., Martinez-Fernandez, J., Seyfried, M., Starks, P. J., Su, Z., … Walker, J. (2020). Improved SMAP dual-channel algorithm for the retrieval of soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 3894–3905.

[6]

Douville, H., & Chauvin, F. (2000). Relevance of soil moisture for seasonal climate predictions: A preliminary study. Climate Dynamics, 16(10–11), 719–736.

[7]

Haji, S. H., & Abdulazeez, A. M. (2021). Comparison of optimization techniques based on gradient descent algorithm: A review. PalArch’s. Journal of Archaeology of Egypt/Egyptology, 18(4), 2715–2743. https://archives.palarch.nl/index.php/jae/article/view/6705

[8]

Hoekman, D. H., Krul, L., & Attema, E. P. W. (1982). A multilayer model for radar backscattering from vegetation canopies. 1982 International Geoscience and Remote Sensing Symposium, Munich, West Germany.

[9]

Jiang, L. H. (2020). Research on soil moisture retrieval base on Sentinel data. University of Electronic Science and Technology of China (in Chinese).

[10]

Jong-Sen lee, L., Grunes, M. R., & de Grandi, G. (1999). Polarimetric SAR speckle filtering and its implication for classification. IEEE Transactions on Geoscience and Remote Sensing, 37(5), 2363–2373.

[11]

Kim, S., Paik, K., Johnson, F. M., & Sharma, A. (2018). Building a flood-warning framework for ungauged locations using low resolution, Open-Access remotely sensed surface soil moisture, precipitation, soil, and topographic information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(2), 375–387.

[12]

Kong, J., Yang, J., Zhen, P., Li, J., & Yang, L. (2018). A coupling model for soil moisture retrieval in sparse vegetation covered areas based on microwave and optical remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 56(12), 7162–7173.

[13]

Kumar, K., Suryanarayana Rao, H. P., & Arora, M. K. (2014). Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment. Hydrological Processes, 29(9), 2137–2148.

[14]

Li, B., & Chen, X. (2020). Synergic use of Sentinel-1 and Sentinel-2 images for soil moisture retrieval in vegetation covered agricultural areas of Jingxian county of Heibei province. Journal of Ecology and Rural Environment, 36(6), 752–761 (in Chinese).

[15]

Li, J., & Wang, S. (2018). Using SAR-derived vegetation descriptors in a water cloud model to improve soil moisture retrieval. Remote Sensing, 10(9), 1370.

[16]

Ma, M., Qu, Y., Lyu, J., Zhang, X., Su, Z., Gao, H., Yang, X., Chen, X., Jiang, T., Zhang, J., Shen, M., & Wang, Z. (2022). The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies. River, 1, 162–171.

[17]

Mo, T., Choudhury, B. J., Schmugge, T. J., Wang, J. R., & Jackson, T. J. (1982). A model for microwave emission from vegetation-covered fields. Journal of Geophysical Research: Oceans, 87(C13), 11229–11237.

[18]

Oh, Y. (2004). Quantitative retrieval of soil moisture content and surface roughness from multi-polarized radar observations of bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 42, 596–601.

[19]

Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE transactions on Geoscience and Remote Sensing, 30(2), 370–381.

[20]

Oh, Y., Sarabandi, K., & Ulaby, F. T. (2002). Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1348–1355.

[21]

Paris, J. (1986). The effect of leaf size on the microwave backscattering by corn. Remote Sensing of Environment, 19(1), 81–95.

[22]

Park, S. E., Jung, Y. T., Cho, J. H., Moon, H., & Han, S. (2019). Theoretical evaluation of water cloud model vegetation parameters. Remote Sensing, 11(8), 894.

[23]

Prevot, L., Champion, I., & Guyot, G. (1993a). Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sensing of Environment, 46(3), 331–339.

[24]

Prevot, L., Dechambre, M., Taconet, O., Madjar, D. V., Normand, M., & Gallej, S. (1993b). Estimating the characteristics of vegetation canopies with airborne radar measurements. International Journal of Remote Sensing, 14(15), 2803–2818.

[25]

Ulaby, F. T., Allen, C. T., Eger, G., & Kanemasu, E. (1984). Relating the microwave backscattering coefficient to leaf area index. Remote Sensing of Environment, 14(1–3), 113–133.

[26]

Wang, Y., Fan, W., & Zhang, J. (2015). The comparison and analysis of SAR image filtering methods. Forest Engineering, 31(3), 81–84.

[27]

Xu, H., Steven, M. D., & Jaggard, K. W. (1996). Monitoring leaf area of sugar beet using ERS-1 SAR data. International Journal of Remote Sensing, 17(17), 3401–3410.

[28]

Zhao, T., Shi, J., Entekhabi, D., Jackson, T. J., & Kang, C. S. (2021). Retrievals of soil moisture and vegetation optical depth using a multi-channel collaborative algorithm. Remote Sensing of Environment, 257(8), 112321.

[29]

Zhu, Y., Liu, Y., Wang, W., Singh, V. P., & Ren, L. (2021). A global perspective on the probability of propagation of drought: From meteorological to soil moisture. Journal of Hydrology, 603, 126907.

RIGHTS & PERMISSIONS

2024 The Author(s). River published by Wiley-VCH GmbH on behalf of China Institute of Water Resources and Hydropower Research (IWHR).

AI Summary AI Mindmap
PDF (1266KB)

494

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/