Comparative study of aeroacoustic performance of 1/8 and 1/1 pantographs coupled with cavity
Xiaoming Tan, Huifang Liu, Zhigang Yang, Hong Chen, Baojun Fu, Linli Gong
Railway Engineering Science ›› 2024, Vol. 32 ›› Issue (4) : 551-572.
Comparative study of aeroacoustic performance of 1/8 and 1/1 pantographs coupled with cavity
The technology of pantograph sinking in the cavity is generally adopted in the new generation of high-speed trains in China for aerodynamic noise reduction in this region. This study takes a high-speed train with a 4-car formation and a pantograph as the research object and compares the aerodynamic acoustic performance of two scale models, 1/8 and 1/1, using large eddy simulation and Ffowcs Williams–Hawkings integral equation. It is found that there is no direct scale similarity between their aeroacoustic performance. The 1/1 model airflow is separated at the leading edge of the panhead and reattached to the panhead, and its vortex shedding Strouhal number (St) is 0.17. However, the 1/8 model airflow is separated directly at the leading edge of the panhead, and its St is 0.13. The cavity’s vortex shedding frequency is in agreement with that calculated by the Rooster empirical formula. The two scale models exhibit some similar characteristics in distribution of sound source energy, but the energy distribution of the 1/8 model is more concentrated in the middle and lower regions. The contribution rates of their middle and lower regions to the radiated noise in the two models are 27.3% and 87.2%, respectively. The peak frequencies of the radiated noise from the 1/1 model are 307 and 571 Hz. The 307 Hz is consistent with the frequency of panhead vortex shedding, and the 571 Hz is more likely to be the result of the superposition of various components. In contrast, the peak frequencies of the radiated noise from the 1/8 scale model are 280 and 1970 Hz. The 280 Hz comes from the shear layer oscillation between the cavity and the bottom frame, and the 1970 Hz is close to the frequency at which the panhead vortex sheds. This shows that the scaled model results need to be corrected before applying to the full-scale model.
[1.] |
Tian HQ (2007) Train aerodynamics. China Railway Press, Beijing, pp 1–18 (in Chinese)
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
Tracy MB, Plentovich EB (2014) Characterization of cavity flow fields using pressure data obtained in the Langley 0.3-meter transonic cryogenic tunnel. Available via NASA Langley Technical Report Server. https://ntrs.nasa.gov/citations/19930013687. Accessed 10 Sept 2023
|
[16.] |
Plentovich E, Stallings JR, Tracy MB (2003) Experimental cavity pressure measurements at subsonic and transonic speeds static-pressure results. Available via NASA Langley Technical Report Server. https://doi.org/10.5555/887492. Accessed 15 Oct 2023
|
[17.] |
Park HM, Dhir CS, Oh DK et al (2005) Filterbank-based blind signal separation with estimated sound direction. In: 2005 IEEE international symposium on circuits and systems (ISCAS), Kobe, Japan, 2005, vol 6. IEEE, New York, 5874–5877
|
[18.] |
Hunt JCR, Wray AA, Moin P (1988) Eddies, streams and convergence zones in turbulent flows. In: Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 Summer Program. Ames Research Center, pp 193–208
|
[19.] |
|
[20.] |
Rossiter JE (1966) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. R&M 3438. Available via AERADE. https://naca.central.cranfield.ac.uk/handle/1826.2/4020. Accessed 15 Aug 2023
|
/
〈 |
|
〉 |