Increasing realism in modelling energy losses in railway vehicles and their impact to energy-efficient train control
Michael Nold, Francesco Corman
Increasing realism in modelling energy losses in railway vehicles and their impact to energy-efficient train control
The reduction of energy consumption is an increasingly important topic of the railway system. Energy-efficient train control (EETC) is one solution, which refers to mathematically computing when to accelerate, which cruising speed to hold, how long one should coast over a suitable space, and when to brake. Most approaches in literature and industry greatly simplify a lot of nonlinear effects, such that they ignore mostly the losses due to energy conversion in traction components and auxiliaries. To fill this research gap, a series of increasingly detailed nonlinear losses is described and modelled. We categorize an increasing detail in this representation as four levels. We study the impact of those levels of detail on the energy optimal speed trajectory. To do this, a standard approach based on dynamic programming is used, given constraints on total travel time. This evaluation of multiple test cases highlights the influence of the dynamic losses and the power consumption of auxiliary components on railway trajectories, also compared to multiple benchmarks. The results show how the losses can make up 50% of the total energy consumption for an exemplary trip. Ignoring them would though result in consistent but limited errors in the optimal trajectory. Overall, more complex trajectories can result in less energy consumption when including the complexity of nonlinear losses than when a simpler model is considered. Those effects are stronger when the trajectory includes many acceleration and braking phases.
Train trajectory optimization / Energy-efficient train control (EETC) / Dynamic efficiency / Power losses in railway vehicles
[1.] |
BAV (2020) Umsetzung der Energiestrategie 2050 im öffentlichen Verkehr (ESöV 2050). Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK - Bundesamt für Verkehr BAV, Bern
|
[2.] |
|
[3.] |
Nold M (2018) Energieeinsparung durch Optimierung der Ventilationssteuerung. Bundesamt für Verkehr (BAV), Bern
|
[4.] |
Huggenberger T, Baden (2016) Modernisierung der Lokomotiven Re460 mit IGBT-Stromrichtern. Elektrische Bahnen 485–489
|
[5.] |
Huggenberger T (2017) IGBT-Stromrichter verrlängern die Lebensdauer der Lokomotiven Re460. ABB Review, pp 65–69
|
[6.] |
|
[7.] |
|
[8.] |
Franke R, Terwiesch P, Meyer M (2002) An algorithm for the optimal control of the driving of trains. In: Proceedings of the 39th IEEE conference on decision and control (Cat. No.00CH37187), December 12–15, 2000, Sydney, NSW, Australia. IEEE. New York, pp 2123–2128
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
Bomhauer-Beins A (2019) Energy saving potentials in railway operations under systemic perspectives. Dissertations, ETH Zurich
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
Kummer W (1919) Die Schaltung der Maschinenfabrik Oerlikon zur Energierückgewinnung auf Einphasenbahnen. Schweizerische Bauzeitung 73/74. https://doi.org/10.5169/SEALS-35562
|
[23.] |
SBZ (1920) 1C+C1 Güterzug-Lokomotiven für die Gotthardlinie der S.B.B. https://doi.org/10.5169/SEALS-36464
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
Steimel A (2006) Elektrische Triebfahrzeuge und ihre Energieversorgung: Grundlagen und Praxis. Oldenbourg-Industrieverl.
|
[28.] |
Gerber R, Drabek E, Müller R (1991) Die Lokomotiven 2000 – Serie Re 460 – der Schweizerischen Bundesbahn. Schweizer Eisenbahn Revue 321–365
|
[29.] |
Nold M, Corman F (2020) eco 4.0. Vorstudie zur: Traktionsbasierten energieorientierten Echtzeitfahrplanoptimierung. Bundesamt für Verkehr (BAV), Bern
|
[30.] |
Nold M, Corman F (2022) Modelling realistic energy losses from variable efficiency and vehicle systems, in determining energy efficient train control
|
[31.] |
|
[32.] |
Meyer M, Roth M, Schaller B (2000) Einfluss der Fahrweise und der Betriebssituation auf den Energieverbrauch von Reisezügen. Schweizer Eisenbahn-Revue 360–365
|
[33.] |
Meyer M, Heck A, Walch G et al (2016) Reduktion des Traktionsenergiebedarfs der Allegra-Triebwagen der RhB. Schweizer Eisenbahn-Revue 69–71
|
[34.] |
Zarifyan A, Zarifyan A, Grebennikov N et al (2019) Increasing the energy efficiency of rail vehicles equipped with a multi-motor electrical traction drive. In: 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), January 30–February 2, 2019. IEEE, Moscow, pp 1–5
|
[35.] |
Xiao Z, Bai B, Chen N, et al (2019) Energy-efficient control for metros with dynamic losses of traction power system. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), October 27–30, 2019, Auckland, New Zealand. IEEE, pp 357–362
|
[36.] |
Graffagnino T, Schäfer R, Tuchschmid M et al (2019) Energy savings with enhanced static timetable information for train drivers. In: 8th International Conference on Railway Operations Modelling and Analysis (ICROMA), Norrköping, Sweden, 17– 20 June 2019
|
[37.] |
Nold M, Thomas H, Corman F (2022) Der Einfluss der Verluste in den Traktionskomponenten auf den Energieverbrauch von Zugfahrten. Schweizer Eisenbahn Revue 84–89
|
[38.] |
|
[39.] |
Filipović Ž (2015) Elektrische Bahnen: Grundlagen, Triebfahrzeuge, Stromversorgung, 5. überarb. Aufl. Springer-Vieweg, Berlin, Heidelberg
|
[40.] |
Peters J-L (1990) Bestimmung des aerodynamischen Widerstandes des ICE/V im Tunnel und auf freier Strecke durch Auslaufversuche. Eisenbahntechnische Rundschau 559–564
|
[41.] |
|
[42.] |
|
[43.] |
Meyer M, Menth S, Lerjen M (2007) Potentialermittlung Energieeffizienz Traktion bei den SBB. Swiss Federal Office of Transport, Bern
|
[44.] |
|
[45.] |
Veigel M (2018) Ein neues Modell zur Berechnung der fertigungsabhängigen Ummagnetisierungsverluste in Synchronmaschinen. Dissertation, Elektrotechnisches Institut (ETI). https://doi.org/10.5445/IR/1000084543
|
[46.] |
|
[47.] |
|
[48.] |
Mahmoudi A, Soong WL, Pellegrino G, et al (2015) Efficiency maps of electrical machines. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 24–25 September 2015, Montreal, QC, Canada. IEEE, pp 2791–2799
|
[49.] |
Bojoi R, Armando E, Pastorelli M, et al (2016) Efficiency and loss mapping of AC motors using advanced testing tools. In: 2016 XXII International Conference on Electrical Machines (ICEM), 4–7 September 2016, Lausanne, Switzerland. IEEE, New York, pp 1043–1049
|
[50.] |
Siemens (2016) Transformatorauswahl in Abhängigkeit von Belastungsprofilen. Siemens AG, Erlangen
|
[51.] |
Binder A (2017) Elektrische Maschinen und Antriebe: Grundlagen, Betriebsverhalten. Springer, Berlin, Heidelberg
|
[52.] |
|
[53.] |
|
[54.] |
|
[55.] |
|
[56.] |
|
[57.] |
|
[58.] |
|
[59.] |
ABB Switzerland (2018) Compact Converter Borderline. ABB Switzerland, Turgi
|
/
〈 | 〉 |