Gene therapy for inborn errors of immunity: past progress, current status and future directions

Robert Torrance , Kate Orf , Thomas A Fox

Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (4) : 29

PDF
Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (4) :29 DOI: 10.20517/rdodj.2025.42
Review

Gene therapy for inborn errors of immunity: past progress, current status and future directions

Author information +
History +
PDF

Abstract

Inborn errors of immunity (IEIs), also known as primary immunodeficiencies, are a group of rare inherited disorders that affect the immune system. They result in severe, opportunistic infections, severe autoimmune manifestations and a predisposition to malignancy. The only curative treatment for many years has been allogenic haematopoietic stem cell transplantation (alloHSCT). However, this requires the availability of a suitable donor and has risks of morbidity and mortality. Autologous gene therapy (GT) abrogates the immunological complications of alloHSCT and uses the patient’s own cells, removing the need for a donor. Preclinical proof-of-concept and clinical trials in humans have demonstrated that GT is safe and effective and can be used to correct a variety of IEIs. In this review, we outline the progress in developing GT for IEIs over the last four decades. We describe the gene editing technologies available to correct IEIs and their current applications. We also examine advances in GT development, the challenges to its application, and discuss future developments in the field, including emerging in vivo approaches.

Keywords

Gene therapy / inborn errors of immunity / primary immunodeficiency

Cite this article

Download citation ▾
Robert Torrance, Kate Orf, Thomas A Fox. Gene therapy for inborn errors of immunity: past progress, current status and future directions. Rare Disease and Orphan Drugs Journal, 2025, 4(4): 29 DOI:10.20517/rdodj.2025.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Poli MC,Bousfiha AA.Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee.J Hum Immun2025;1:e20250003

[2]

Boyle JM.Population prevalence of diagnosed primary immunodeficiency diseases in the United States.J Clin Immunol2007;27:497-502

[3]

Lankester AC,Booth C.Inborn Errors Working Party of the European Society for Blood and Marrow Transplantation and the European Society for Immune Deficienciesand European Reference Network on Rare Primary Immunodeficiency Autoinflammatory Autoimmune diseases (RITA)EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity.Bone Marrow Transplant2021;56:2052-62 PMCID:PMC8410590

[4]

Bach FH,Joo P,Bortin MM.Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome.Lancet1968;2:1364-6

[5]

Castagnoli R,Calzoni E.Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives.Front Pediatr2019;7:295 PMCID:PMC6694735

[6]

Gennery AR.Inborn Errors Working Party (IEWP) of the European Society for Blood and Marrow Transplantation (EBMT)Long term outcome and immune function after hematopoietic stem cell transplantation for primary immunodeficiency.Front Pediatr2019;7:381

[7]

Pai SY,Griffith LM.Transplantation outcomes for severe combined immunodeficiency, 2000-2009.N Engl J Med2014;371:434-46

[8]

Therrell BL,Borrajo GJC.Current status of newborn bloodspot screening worldwide 2024: a comprehensive review of recent activities (2020-2023).Int J Neonatal Screen2024;10:38

[9]

Gratwohl A,Frassoni F.Acute and Chronic Leukemia Working PartiesInfectious Diseases Working Party of the European Group for Blood and Marrow TransplantationCause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: an EBMT analysis of lethal infectious complications and changes over calendar time.Bone Marrow Transplant2005;36:757-69

[10]

Fox TA,Lever C.Pre-transplant immune dysregulation predicts for poor outcome following allogeneic haematopoietic stem cell transplantation in adolescents and adults with inborn errors of immunity (IEI).J Clin Immunol2025;45:64 PMCID:PMC11703937

[11]

Heimall J,Buckley R.Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency patients: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric HCT.Biol Blood Marrow Transplant2017;23:379-87 PMCID:PMC5659271

[12]

Albert MH,Wiebking V.Allogeneic stem cell transplantation in adolescents and young adults with primary immunodeficiencies.J Allergy Clin Immunol Pract2018;6:298-301.e2

[13]

Mercola KE.Sounding boards. The potentials of inserting new genetic information.N Engl J Med1980;303:1297-300

[14]

Bordignon C,Nobili N.Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients.Science1995;270:470-5

[15]

Blaese RM,Miller AD.T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years.Science1995;270:475-80

[16]

Aiuti A,Aker M.Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.Science2002;296:2410-3

[17]

Gaspar HB,Parsley K.Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning.Mol Ther2006;14:505-13

[18]

Candotti F,Muul L.Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.Blood2012;120:3635-46

[19]

Cavazzana-Calvo M,de Saint Basile G.Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science2000;288:669-72

[20]

Gaspar HB,Howe S.Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector.Lancet2004;364:2181-7

[21]

Hacein-Bey-Abina S,Carlier F.Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy.N Engl J Med2002;346:1185-93

[22]

Boztug K,Schwarzer A.Stem-cell gene therapy for the Wiskott-Aldrich syndrome.N Engl J Med2010;363:1918-27

[23]

Braun CJ,Paruzynski A.Gene therapy for Wiskott-Aldrich syndrome-long-term efficacy and genotoxicity.Sci Transl Med2014;6:227ra33

[24]

Kang EM,Theobald N.Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils.Blood2010;115:783-91 PMCID:PMC2815517

[25]

Stein S,Schultze-Strasser S.Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease.Nat Med2010;16:198-204

[26]

Fischer A.Gene therapy for inborn errors of immunity: past, present and future.Nat Rev Immunol2023;23:397-408

[27]

Hacein-Bey-Abina S,Schmidt M.LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.Science2003;302:415-9

[28]

Cesana D,Calabria A.A case of T-cell acute lymphoblastic leukemia in retroviral gene therapy for ADA-SCID.Nat Commun2024;15:3662 PMCID:PMC11061298

[29]

Hacein-Bey-Abina S,Gaspar HB.A modified γ-retrovirus vector for X-linked severe combined immunodeficiency.N Engl J Med2014;371:1407-17 PMCID:PMC4274995

[30]

Thornhill SI,Howe SJ.Self-inactivating gammaretroviral vectors for gene therapy of X-linked severe combined immunodeficiency.Mol Ther2008;16:590-8 PMCID:PMC6748866

[31]

Mamcarz E,Lockey T.Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1.N Engl J Med2019;380:1525-34

[32]

Ferrua F,Galimberti S.Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study.Lancet Haematol2019;6:e239-53

[33]

Magnani A,Adam F.Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome.Nat Med2022;28:71-80

[34]

Booth C,Almarza E.Lentiviral gene therapy for severe leukocyte adhesion deficiency type 1.N Engl J Med2025;392:1698-709

[35]

Kohn DB,Kang EM.Net4CGD consortiumLentiviral gene therapy for X-linked chronic granulomatous disease.Nat Med2020;26:200-6

[36]

Kohn DB,Shaw KL.Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency.N Engl J Med2021;384:2002-13

[37]

Aiuti A,Galimberti S.Gene therapy for immunodeficiency due to adenosine deaminase deficiency.N Engl J Med2009;360:447-58

[38]

Shaw KL,Mishra S.Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency.J Clin Invest2017;127:1689-99

[39]

Cicalese MP,Castagnaro L.Gene therapy for adenosine deaminase deficiency: a comprehensive evaluation of short- and medium-term safety.Mol Ther2018;26:917-31 PMCID:PMC5910668

[40]

Gaspar HB,Gilmour KC.Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency.Sci Transl Med2011;3:97ra79

[41]

Cicalese MP,Castagnaro L.Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency.Blood2016;128:45-54

[42]

Hacein-Bey-Abina S,Wang GP.Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1.J Clin Invest2008;118:3132-42

[43]

Howe SJ,Schwarzwaelder K.Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.J Clin Invest2008;118:3143-50

[44]

Aiuti A,Scaramuzza S.Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.Science2013;341:1233151

[45]

Kang HJ,Paruzynski A.Retroviral gene therapy for X-linked chronic granulomatous disease: results from phase I/II trial.Mol Ther2011;19:2092-101 PMCID:PMC3222528

[46]

Schejtman A,Clare S.Lentiviral gene therapy rescues p47phox chronic granulomatous disease and the ability to fight Salmonella infection in mice.Gene Ther2020;27:459-69

[47]

Masiuk KE,Roncarolo MG,Kohn DB.Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome.Cell Stem Cell2019;24:309-317.e7

[48]

Takushi SE,Fedanov A.Lentiviral Gene therapy for familial hemophagocytic lymphohistiocytosis type 3, caused by UNC13D genetic defects.Hum Gene Ther2020;31:626-38

[49]

Ghosh S,Calero-Garcia M.T-cell gene therapy for perforin deficiency corrects cytotoxicity defects and prevents hemophagocytic lymphohistiocytosis manifestations.J Allergy Clin Immunol2018;142:904-913.e3

[50]

Hong Y,Houghton BC.Lentiviral mediated ADA2 gene transfer corrects the defects associated with deficiency of adenosine deaminase type 2.Front Immunol2022;13:852830 PMCID:PMC9073084

[51]

van Til NP,Mashamba N.Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene.Mol Ther2012;20:1968-80 PMCID:PMC3464632

[52]

Panchal N,Diez B.Transfer of gene-corrected T cells corrects humoral and cytotoxic defects in patients with X-linked lymphoproliferative disease.J Allergy Clin Immunol2018;142:235-245.e6 PMCID:PMC6034012

[53]

Seymour BJ,Certo HM.Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector.Mol Ther Methods Clin Dev2021;20:635-51 PMCID:PMC7907679

[54]

Hahn K,Nowak J.Human lentiviral gene therapy restores the cellular phenotype of autosomal recessive complete IFN-γR1 deficiency.Mol Ther Methods Clin Dev2020;17:785-95 PMCID:PMC7184269

[55]

Garcia-Perez L,van Roon L.Successful preclinical development of gene therapy for recombinase-activating gene-1-deficient SCID.Mol Ther Methods Clin Dev2020;17:666-82 PMCID:PMC7163047

[56]

Cowan MJ,Facchino J.Lentiviral gene therapy for artemis-deficient SCID.N Engl J Med2022;387:2344-55

[57]

Booth C,Lopez MC.Severe leukocyte adhesion deficiency-I (LAD-I) lentiviral-mediated ex-vivo gene therapy: ongoing phase 1/2 study results.Clinical Immunology2023;250:109354

[58]

Kohn DB,Almarza E.A phase 1/2 study of lentiviral-mediated ex-vivo gene therapy for pediatric patients with severe leukocyte adhesion deficiency-I (LAD-I): results from phase 1.Blood2020;136:15

[59]

Fox TA,Petersone L.Therapeutic gene editing of T cells to correct CTLA-4 insufficiency.Sci Transl Med2022;14:eabn5811 PMCID:PMC7617859

[60]

Brown MP,Sangster MY.Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice.Nat Med1998;4:1253-60

[61]

Sacco MG,Catò EM.Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome.Cancer Gene Ther2000;7:1299-306

[62]

Liu X,Liu Y,Huang X.Advances in CRISPR/Cas gene therapy for inborn errors of immunity.Front Immunol2023;14:1111777 PMCID:PMC10083256

[63]

Mudde A.Gene therapy for inborn error of immunity - current status and future perspectives.Curr Opin Allergy Clin Immunol2023;23:51-62

[64]

Bibikova M,Golic KG.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases.Genetics2002;161:1169-75 PMCID:PMC1462166

[65]

Gaj T,Barbas CF 3rd.ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.Trends Biotechnol2013;31:397-405 PMCID:PMC3694601

[66]

Durai S,Kandavelou K,Porteus MH.Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.Nucleic Acids Res2005;33:5978-90 PMCID:PMC1270952

[67]

Christian M,Doyle EL.Targeting DNA double-strand breaks with TAL effector nucleases.Genetics2010;186:757-61 PMCID:PMC2942870

[68]

Jinek M,Fonfara I,Doudna JA.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012;337:816-21 PMCID:PMC6286148

[69]

Wang JY.CRISPR technology: a decade of genome editing is only the beginning.Science2023;379:eadd8643

[70]

Lieber MR.The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.Annu Rev Biochem2010;79:181-211 PMCID:PMC3079308

[71]

van Overbeek M,Carter MM.DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks.Mol Cell2016;63:633-46

[72]

Rouet P,Jasin M.Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease.Mol Cell Biol1994;14:8096-106 PMCID:PMC359348

[73]

Rouet P,Jasin M.Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells.Proc Natl Acad Sci U S A1994;91:6064-8 PMCID:PMC44138

[74]

Ran FA,Wright J,Scott DA.Genome engineering using the CRISPR-Cas9 system.Nat Protoc2013;8:2281-308 PMCID:PMC3969860

[75]

Bak RO,Porteus MH.CRISPR/Cas9 genome editing in human hematopoietic stem cells.Nat Protoc2018;13:358-76 PMCID:PMC5826598

[76]

Heyer WD,Liu J.Regulation of homologous recombination in eukaryotes.Annu Rev Genet2010;44:113-39 PMCID:PMC4114321

[77]

Kuo CY,Campo-Fernandez B.Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome.Cell Rep2018;23:2606-16 PMCID:PMC6181643

[78]

Pavel-Dinu M,Dejene BT.Gene correction for SCID-X1 in long-term hematopoietic stem cells.Nat Commun2019;10:1634

[79]

Rai R,Rivers E.Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott -Aldrich Syndrome.Nat Commun2020;11:4034

[80]

Goodwin M,Lakshmanan U.CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells.Sci Adv2020;6:eaaz0571

[81]

De Ravin SS,Meis RJ.Enhanced homology-directed repair for highly efficient gene editing in hematopoietic stem/progenitor cells.Blood2021;137:2598-608 PMCID:PMC8120141

[82]

Anzalone AV,Liu DR.Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors.Nat Biotechnol2020;38:824-44

[83]

Huang TP,Miller SM.High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs.Nat Biotechnol2023;41:96-107 PMCID:PMC9849140

[84]

Thuronyi BW,Levy JM.Continuous evolution of base editors with expanded target compatibility and improved activity.Nat Biotechnol2019;37:1070-9 PMCID:PMC6728210

[85]

Richter MF,Eton E.Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity.Nat Biotechnol2020;38:883-91 PMCID:PMC7357821

[86]

Kim YB,Levy JM,Zhao KT.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions.Nat Biotechnol2017;35:371-6 PMCID:PMC5388574

[87]

Landrum MJ,Benson M.ClinVar: improving access to variant interpretations and supporting evidence.Nucleic Acids Res2018;46:D1062-7 PMCID:PMC5753237

[88]

Huang TP,Miller SM.Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.Nat Biotechnol2019;37:626-31 PMCID:PMC6551276

[89]

Walton RT,Whittaker MN.Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.Science2020;368:290-6 PMCID:PMC7297043

[90]

Miller SM,Randolph PB.Continuous evolution of SpCas9 variants compatible with non-G PAMs.Nat Biotechnol2020;38:471-81 PMCID:PMC7145744

[91]

Anzalone AV,Davis JR.Search-and-replace genome editing without double-strand breaks or donor DNA.Nature2019;576:149-57

[92]

Doman JL,Randolph PB,Liu DR.Designing and executing prime editing experiments in mammalian cells.Nat Protoc2022;17:2431-68 PMCID:PMC9799714

[93]

Pluciennik A,Iyer RR,Kadyrov FA.PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair.Proc Natl Acad Sci U S A2010;107:16066-71 PMCID:PMC2941292

[94]

Vavassori V,Marcovecchio GE.Modeling, optimization, and comparable efficacy of T cell and hematopoietic stem cell gene editing for treating hyper-IgM syndrome.EMBO Mol Med2021;13:e13545

[95]

Castiello MC,Ferrari S.Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency.Sci Transl Med2024;16:eadh8162 PMCID:PMC11149094

[96]

Gardner CL,Dobbs K.Gene editing rescues in vitro T cell development of RAG2-deficient induced pluripotent stem cells in an artificial thymic organoid system.J Clin Immunol2021;41:852-62 PMCID:PMC8254788

[97]

Iancu O,Knop O.Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs.Mol Ther Nucleic Acids2023;31:105-21 PMCID:PMC9813580

[98]

Bahal S,Moula SE.Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia.J Allergy Clin Immunol2024;154:195-208.e8 PMCID:PMC11752842

[99]

Rai R,Romito M.CRISPR/Cas9-based disease modeling and functional correction of interleukin 7 receptor alpha severe combined immunodeficiency in T-Lymphocytes and hematopoietic stem cells.Hum Gene Ther2024;35:269-83 PMCID:PMC11698663

[100]

De Ravin SS,Liu PQ.Targeted gene addition in human CD34+ hematopoietic cells for correction of X-linked chronic granulomatous disease.Nat Biotechnol2016;34:424-9 PMCID:PMC4824656

[101]

Sweeney CL,Choi U.Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair.Gene Ther2021;28:373-90 PMCID:PMC8232036

[102]

Brault J,Bello E.CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes.Blood2021;138:2768-80

[103]

Houghton BC,Haas SA.Genome editing with TALEN, CRISPR-Cas9 and CRISPR-Cas12a in combination with AAV6 homology donor restores T cell function for XLP.Front Genome Ed2022;4:828489 PMCID:PMC9168036

[104]

Pavel-Dinu M,Selvaraj S.Correcting autoinflammation in STING-associated vasculopathy with onset in infancy (SAVI) by human stem cell genome-editing. Research Square 2024.

[105]

McAuley GE,Chang PC.Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing.Cell2023;186:1398-1416.e23

[106]

Bzhilyanskaya V,Liu S.High-fidelity PAMless base editing of hematopoietic stem cells to treat chronic granulomatous disease.Sci Transl Med2024;16:eadj6779 PMCID:PMC11753194

[107]

Heath JM,Tedeschi JG.Prime editing efficiently and precisely corrects causative mutation in chronic granulomatous disease, restoring myeloid function: toward development of a prime edited autologous hematopoietic stem cell therapy.Blood2023;142:7129

[108]

Dettmer-Monaco V,Ammann S.Gene editing of hematopoietic stem cells restores T-cell response in familial hemophagocytic lymphohistiocytosis.J Allergy Clin Immunol2024;153:243-255.e14

[109]

Nasri M,Mir P.CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia.Mol Ther2024;32:1628-42 PMCID:PMC11184331

[110]

Fiumara M,Omer-Javed A.Genotoxic effects of base and prime editing in human hematopoietic stem cells.Nat Biotechnol2024;42:877-91 PMCID:PMC11180610

[111]

Cuvelier GDE,Prockop SE.Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC.Blood2022;140:685-705 PMCID:PMC9389638

[112]

Egg D,Mitsuiki N.Therapeutic options for CTLA-4 insufficiency.J Allergy Clin Immunol2022;149:736-46

[113]

Panchal N,Booth C.T cell gene therapy to treat immunodeficiency.Br J Haematol2021;192:433-43

[114]

Frangoul H,Sharma A.CLIMB SCD-121 Study GroupExagamglogene autotemcel for severe sickle cell disease.N Engl J Med2024;390:1649-62

[115]

Albert MH,Gennery A.Busulfan/fludarabine- or treosulfan/fludarabine-based conditioning regimen in patients with Wiskott-Aldrich syndrome given allogeneic hematopoietic cell transplantation - an EBMT inborn errors working party and scetide retrospective analysis.Blood2018;132:2175

[116]

Tsilifis C,Lum SH.Hematopoietic stem cell transplantation for CTLA-4 insufficiency across Europe: a European Society for Blood and Marrow Transplantation Inborn Errors Working Party study.J Allergy Clin Immunol2024;154:1534-44

[117]

Ferrari S,Cesana D.Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells.Cell Stem Cell2022;29:1428-44.e9 PMCID:PMC9550218

[118]

Asperti C,Porcellini S.Scalable GMP-compliant gene correction of CD4+ T cells with IDLV template functionally validated in vitro and in vivo.Mol Ther Methods Clin Dev2023;30:546-57

[119]

Melenhorst JJ,Wang M.Decade-long leukaemia remissions with persistence of CD4+ CAR T cells.Nature2022;602:503-9 PMCID:PMC9166916

[120]

Passerini L,Sartirana C.CD4+ T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer.Sci Transl Med2013;5:215ra174

[121]

Hubbard N,Sommer K.Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome.Blood2016;127:2513-22

[122]

Pai SY.Treatment of primary immunodeficiency with allogeneic transplant and gene therapy.Hematology Am Soc Hematol Educ Program2019;2019:457-65 PMCID:PMC6913427

[123]

Pai SY.Stem cell transplantation for primary immunodeficiency diseases: the North American experience.Curr Opin Allergy Clin Immunol2014;14:521-6 PMCID:PMC4238389

[124]

Albert MH,Eikema DJ.Hematopoietic stem cell transplantation for adolescents and adults with inborn errors of immunity: an EBMT IEWP study.Blood2022;140:1635-49

[125]

Burns SO.How I use allogeneic HSCT for adults with inborn errors of immunity.Blood2021;138:1666-76

[126]

Morris EC,Chakraverty R.Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult.Blood2017;130:1327-35 PMCID:PMC5813727

[127]

Pipe SW,Recht M.Gene therapy with etranacogene dezaparvovec for hemophilia B.N Engl J Med2023;388:706-18

[128]

Ozelo MC,Pasi KJ.GENEr8-1 Trial GroupValoctocogene roxaparvovec gene therapy for hemophilia A.N Engl J Med2022;386:1013-25

[129]

Gillmore JD,Taubel J.CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.N Engl J Med2021;385:493-502

[130]

Maestro S,Zabaleta N,Gonzalez-Aseguinolaza G.Novel vectors and approaches for gene therapy in liver diseases.JHEP Rep2021;3:100300 PMCID:PMC8203845

[131]

Lee-Six H,Shepherd MS.Population dynamics of normal human blood inferred from somatic mutations.Nature2018;561:473-8 PMCID:PMC6163040

[132]

Li C,Mishra A.In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice.Blood Adv2021;5:1122-35 PMCID:PMC7903237

[133]

Li C,Newby GA.In vivo base editing by a single i.v. vector injection for treatment of hemoglobinopathies.JCI Insight2022;7:e162939 PMCID:PMC9675455

[134]

Li C,Gil S.Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors.Mol Ther Methods Clin Dev2022;24:127-41

[135]

Wang H,Li C.In vivo HSC transduction in rhesus macaques with an HDAd5/3+ vector targeting desmoglein 2 and transiently overexpressing cxcr4.Blood Adv2022;6:4360-72

[136]

Breda L,Triebwasser MP.In vivo hematopoietic stem cell modification by mRNA delivery.Science2023;381:436-43 PMCID:PMC10567133

[137]

Shi D,Anderson DG.In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles.Nano Lett2023;23:2938-44 PMCID:PMC10103292

[138]

Kattula S,Chandra V.In vivo hematopoietic stem cell engineering restores the function of NADPH enzyme complex in X-linked chronic granulomatous disease model mice.Blood2024;144:2198

[139]

Valsecchi MC.Rescue of an orphan drug points to a new model for therapies for rare diseases.Nat Italy2023;

[140]

Grunebaum E,Cuvelier GDE,Aiuti A.Updated management guidelines for adenosine deaminase deficiency.J Allergy Clin Immunol Pract2023;11:1665-75

[141]

Bertaina A,Rutella S.HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders.Blood2014;124:822-6

[142]

Kurzay M,Schmid I.T-cell replete haploidentical bone marrow transplantation and post-transplant cyclophosphamide for patients with inborn errors.Haematologica2019;104:e478-82 PMCID:PMC6886426

[143]

Fox TA,Burns S.Successful outcome following allogeneic hematopoietic stem cell transplantation in adults with primary immunodeficiency.Blood2018;131:917-31 PMCID:PMC6225386

[144]

Balashov D,Maschan M.Single-center experience of unrelated and haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes.Biol Blood Marrow Transplant2015;21:1955-62

[145]

Shah RM,Nademi Z.T-cell receptor αβ+ and CD19+ cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency.J Allergy Clin Immunol2018;141:1417-26.e1

[146]

Slatter MA.Hematopoietic cell transplantation in primary immunodeficiency - conventional and emerging indications.Expert Rev Clin Immunol2018;14:103-14

[147]

Marty FM,Chemaly RF.Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation.N Engl J Med2017;377:2433-44

[148]

Chiesa R,Blok HJ.Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults.Blood2020;136:1201-11

[149]

Fox T,Candotti F.AGORA InitiativeAccess to gene therapy for rare diseases when commercialization is not fit for purpose.Nat Med2023;29:518-9

[150]

Fox TA.Improving access to gene therapy for rare diseases.Dis Model Mech2024;17 PMCID:PMC11051979

[151]

Aiuti A,Naldini L.Ensuring a future for gene therapy for rare diseases.Nat Med2022;28:1985-8

[152]

Kliegman M,Abrahamson S.A roadmap for affordable genetic medicines.Nature2024;634:307-14

[153]

Casirati G,Mucci A.Epitope editing enables targeted immunotherapy of acute myeloid leukaemia.Nature2023;621:404-14 PMCID:PMC10499609

[154]

Kwon HS,Chhabra A.Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice.Blood2019;133:2104-8 PMCID:PMC6509543

[155]

Cavazzana M.A new step toward non-genotoxic conditioning prior to hematopoietic stem cell transplantation.Mol Ther2024;32:1604-5 PMCID:PMC11184374

[156]

Pang WW,Logan AC.Anti-CD117 antibody depletes normal and myelodysplastic syndrome human hematopoietic stem cells in xenografted mice.Blood2019;133:2069-78 PMCID:PMC6509544

[157]

Saha A,Lamothe T.A CD45-targeted antibody-drug conjugate successfully conditions for allogeneic hematopoietic stem cell transplantation in mice.Blood2022;139:1743-59 PMCID:PMC8931510

[158]

Uchida N,Demirci S.Fertility-preserving myeloablative conditioning using single-dose CD117 antibody-drug conjugate in a rhesus gene therapy model.Nat Commun2023;14:6291 PMCID:PMC10570335

[159]

Straathof KC,Eyrich M.Haemopoietic stem-cell transplantation with antibody-based minimal-intensity conditioning: a phase 1/2 study.Lancet2009;374:912-20

[160]

Agarwal R,Kwon H.Non-genotoxic anti-CD117 antibody conditioning results in successful hematopoietic stem cell engraftment in patients with severe combined immunodeficiency.Blood2019;134:800-800

[161]

Arai Y,Corsino CI.Myeloid conditioning with c-kit-Targeted CAR-T cells enables donor stem cell engraftment.Mol Ther2018;26:1181-97 PMCID:PMC5993968

[162]

Wellhausen N,Lesch S.Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy.Sci Transl Med2023;15:eadi1145 PMCID:PMC10682510

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/