Organellar crosstalk as a potential therapeutic target for rare neurodegenerative diseases

Josephine J. Lam , Chenxu Li , Marcia R. Terluk , Reena V. Kartha

Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (1) : 4

PDF
Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (1) :4 DOI: 10.20517/rdodj.2024.55
Review

Organellar crosstalk as a potential therapeutic target for rare neurodegenerative diseases

Author information +
History +
PDF

Abstract

Organellar crosstalk has gained significant interest due to its essential role in maintaining cellular homeostasis and normal function. Conversely, disruptions in organelles and their interactions are increasingly recognized as key contributors to the pathogenesis of numerous diseases. Rare neurodegenerative diseases, such as Gaucher disease (GD) and X-linked adrenoleukodystrophy (ALD), are caused by inherited mutations that disrupt critical metabolic pathways. Genetic variants encoding key proteins involved in these pathways result in the excessive accumulation of corresponding substrates, which subsequently trigger organellar crosstalk dysfunction, often involving mitochondria, lysosomes, endoplasmic reticulum (ER), or peroxisomes. To date, the specific mechanisms underlying organellar interactions and their roles in the pathophysiology of these respective diseases are not fully elucidated, an area that continues to be actively studied. Understanding these mechanisms could reveal novel pathways or targets for future therapeutic development. Furthermore, the severity of these rare neurodegenerative diseases and the lack of effective treatments for patients underscore the urgency for thorough investigations into organellar crosstalk. This review provides an overview of the crosstalk between mitochondria, lysosomes, the ER, and peroxisomes in lysosomal diseases, such as GD, and peroxisomal disorders, including ALD. Additionally, we explore potential therapeutic strategies targeting these interconnected pathways.

Keywords

Organellar crosstalk / lysosomal impairment / mitochondrial dysfunction / peroxisome / Gaucher disease / adrenoleukodystrophy

Cite this article

Download citation ▾
Josephine J. Lam, Chenxu Li, Marcia R. Terluk, Reena V. Kartha. Organellar crosstalk as a potential therapeutic target for rare neurodegenerative diseases. Rare Disease and Orphan Drugs Journal, 2025, 4(1): 4 DOI:10.20517/rdodj.2024.55

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prinz WA,Balla T.The functional universe of membrane contact sites.Nat Rev Mol Cell Biol2020;21:7-24 PMCID:PMC10619483

[2]

Inoue T,Inagi R.Organelle crosstalk in the kidney.Kidney Int2019;95:1318-25

[3]

Ferreira CR.Inborn errors of metabolism. In: de Vries LS, Glass H, editors. Handbook of Clinical Neurology. Elsevier; 2019;162:pp. 449-81. PMCID:PMC11755387

[4]

Saudubray JM.An overview of inborn errors of metabolism affecting the brain: from neurodevelopment to neurodegenerative disorders.Dialogues Clin Neurosci2018;20:301-25 PMCID:PMC6436954

[5]

Roh J,Weinreb NJ.Gaucher disease - more than just a rare lipid storage disease.J Mol Med2022;100:499-518

[6]

Arévalo NB,Cavieres VA.Neuronopathic Gaucher disease: beyond lysosomal dysfunction.Front Mol Neurosci2022;15:934820 PMCID:PMC9381931

[7]

Stepien KM,Donald A,Church H.Secondary mitochondrial dysfunction as a cause of neurodegenerative dysfunction in lysosomal storage diseases and an overview of potential therapies.Int J Mol Sci2022;23:10573 PMCID:PMC9503973

[8]

Farfel-Becker T,Pressey SN,Cooper JD.Spatial and temporal correlation between neuron loss and neuroinflammation in a mouse model of neuronopathic Gaucher disease.Hum Mol Genet2011;20:1375-86

[9]

Osellame LD.Defective quality control mechanisms and accumulation of damaged mitochondria link Gaucher and Parkinson diseases.Autophagy2013;9:1633-5

[10]

de la Mata M,Oropesa-Ávila M.Pharmacological chaperones and coenzyme Q10 treatment improves mutant β-glucocerebrosidase activity and mitochondrial function in neuronopathic forms of Gaucher disease.Sci Rep2015;5:10903 PMCID:PMC4456666

[11]

Xu YH,Sun Y.Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice.Hum Mol Genet2014;23:3943-57 PMCID:PMC4082362

[12]

Cleeter MW,Gluck C.Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage.Neurochem Int2013;62:1-7 PMCID:PMC3550523

[13]

Gegg ME.Mitochondrial dysfunction associated with glucocerebrosidase deficiency.Neurobiol Dis2016;90:43-50 PMCID:PMC4838669

[14]

Ivanova MM,Iaonou C.Impaired autophagic and mitochondrial functions are partially restored by ERT in Gaucher and Fabry diseases.PLoS One2019;14:e0210617 PMCID:PMC6329517

[15]

Ivanova MM,Kasaci N.Cellular and biochemical response to chaperone versus substrate reduction therapies in neuropathic Gaucher disease.PLoS One2021;16:e0247211 PMCID:PMC8544834

[16]

Kaufman RJ.Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls.Genes Dev1999;13:1211-33

[17]

Liu EA.The intersection of lysosomal and endoplasmic reticulum calcium with autophagy defects in lysosomal diseases.Neurosci Lett2019;697:10-6 PMCID:PMC6202281

[18]

Hwang J.Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways.Trends Biochem Sci2018;43:593-605 PMCID:PMC6327314

[19]

Zhang K.From endoplasmic-reticulum stress to the inflammatory response.Nature2008;454:455-62 PMCID:PMC2727659

[20]

Maor G,Filocamo M,Segal D.Unfolded protein response in Gaucher disease: from human to Drosophila.Orphanet J Rare Dis2013;8:140 PMCID:PMC3819655

[21]

Görlach A,Kietzmann T.The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control.Antioxid Redox Signal2006;8:1391-418

[22]

Sharma N,Kalivendi SV.The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: role of oxidative stress mediated downregulation of DJ-1 in Parkinson’s disease.Free Radic Biol Med2019;135:28-37

[23]

Lin KJ,Chen SD.The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease.Int J Mol Sci2019;20:5312 PMCID:PMC6862467

[24]

Wong YC,Peng W.Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis.Trends Cell Biol2019;29:500-13 PMCID:PMC8475646

[25]

Belton TB,Cisneros J.Live cell microscopy of mitochondria-lysosome contact site formation and tethering dynamics.STAR Protoc2022;3:101262 PMCID:PMC8938322

[26]

Kim S,Gao F.Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease.Nat Commun2021;12:1807 PMCID:PMC7985376

[27]

Schumann A,Belche V.Defective lysosomal storage in Fabry disease modifies mitochondrial structure, metabolism and turnover in renal epithelial cells.J Inherit Metab Dis2021;44:1039-50

[28]

Huang W,Jiang C.Mitochondrial dysfunction is associated with hypertrophic cardiomyopathy in pompe disease-specific induced pluripotent stem cell-derived cardiomyocytes.Cell Prolif2024;57:e13573

[29]

Suarez-Guerrero JL,Arias Flórez JS.[Mucopolysaccharidosis: clinical features, diagnosis and management].Rev Chil Pediatr2016;87:295-304

[30]

Leal AF,Rintz E.Mucopolysaccharidoses: cellular consequences of glycosaminoglycans accumulation and potential targets.Int J Mol Sci2022;24:477 PMCID:PMC9820209

[31]

Kemp S.Biochemical aspects of X-linked adrenoleukodystrophy.Brain Pathol2010;20:831-7 PMCID:PMC8094824

[32]

Turk BR,Fatemi A.X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening and therapies.Int J Dev Neurosci2020;80:52-72 PMCID:PMC7041623

[33]

Moser HW,Raymond GV.X-linked adrenoleukodystrophy.Nat Clin Pract Neurol2007;3:140-51

[34]

Berger J,Eichler FS.Pathophysiology of X-linked adrenoleukodystrophy.Biochimie2014;98:135-42 PMCID:PMC3988840

[35]

Raymond GV,Fatemi A. X-linked adrenoleukodystrophy. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1315/. [Last accessed on 26 Feb 2025]

[36]

Kemp S,Aubourg P.X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects.Biochim Biophys Acta2012;1822:1465-74

[37]

Wanders RJA,Ribeiro D,Waterham HR.The physiological functions of human peroxisomes.Physiol Rev2023;103:957-1024

[38]

Smith JJ.Regulation of peroxisome dynamics.Curr Opin Cell Biol2009;21:119-26 PMCID:PMC2681484

[39]

Sandalio LM,Romero-puertas MC.Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río LA, editor. Peroxisomes and their key role in cellular signaling and metabolism. Dordrecht: Springer Netherlands; 2013. pp. 231-55.

[40]

Fransen M,Wang B.Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.Biochim Biophys Acta2012;1822:1363-73

[41]

Hulshagen L,Bottelbergs A.Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration.J Neurosci2008;28:4015-27 PMCID:PMC6670456

[42]

Krysko O,Janssen A.Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver.J Neurosci Res2007;85:58-72

[43]

Wiesinger C,Regelsberger G,Berger J.Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction.J Biol Chem2013;288:19269-79 PMCID:PMC3696697

[44]

Fourcade S,Pujol A.Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: a paradigm for axonal degeneration.Free Radic Biol Med2015;88:18-29

[45]

Launay N,Fourcade S.Oxidative stress regulates the ubiquitin-proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy.Brain2013;136:891-904

[46]

Launay N,Fourcade S.Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy.Acta Neuropathol2015;129:399-415 PMCID:PMC4331612

[47]

Kruska N,Pujol A.Astrocytes and mitochondria from adrenoleukodystrophy protein (ABCD1)-deficient mice reveal that the adrenoleukodystrophy-associated very long-chain fatty acids target several cellular energy-dependent functions.Biochim Biophys Acta2015;1852:925-36

[48]

López-Erauskin J,Ruiz M.Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy.Hum Mol Genet2013;22:3296-305

[49]

Morató L,Ruiz M.Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy.Brain2013;136:2432-43 PMCID:PMC4550111

[50]

López-Erauskin J,Bianchi P.Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy.Brain2012;135:3584-98 PMCID:PMC3525057

[51]

Wanders RJA,Waterham HR.Fatty acid oxidation in peroxisomes: enzymology, metabolic crosstalk with other organelles and peroxisomal disorders. In: Lizard G, editor. Peroxisome biology: experimental models, peroxisomal disorders and neurological diseases. Cham: Springer International Publishing; 2020. pp. 55-70.

[52]

van de Beek MC,Dijkstra I.Lipid-induced endoplasmic reticulum stress in X-linked adrenoleukodystrophy.Biochim Biophys Acta Mol Basis Dis2017;1863:2255-65

[53]

Fransen M,Walton P.The peroxisome-mitochondria connection: how and why?.Int J Mol Sci2017;18:1126 PMCID:PMC5485950

[54]

Singh J,Singh I.Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy.J Lipid Res2009;50:135-47 PMCID:PMC2602866

[55]

Singh I.Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis.Brain Pathol2010;20:838-44 PMCID:PMC3021280

[56]

Court FA.Mitochondria as a central sensor for axonal degenerative stimuli.Trends Neurosci2012;35:364-72

[57]

Fourcade S,Ruiz M,Pujol A.Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy.Biochimie2014;98:143-9

[58]

Fujiki Y,Matsuzaki T.Peroxisome biogenesis disorders: molecular basis for impaired peroxisomal membrane assembly: in metabolic functions and biogenesis of peroxisomes in health and disease.Biochim Biophys Acta2012;1822:1337-42

[59]

Salpietro V,Saggar A.Zellweger syndrome and secondary mitochondrial myopathy.Eur J Pediatr2015;174:557-63

[60]

Lieber DS,Slate NG.Next generation sequencing with copy number variant detection expands the phenotypic spectrum of HSD17B4-deficiency.BMC Med Genet2014;15:30 PMCID:PMC4015298

[61]

Jenkinson EM,Walsh T.University of Washington Center for Mendelian GenomicsPerrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease.Am J Hum Genet2013;92:605-13 PMCID:PMC3617381

[62]

Pierce SB,Lynch ED.Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome.Proc Natl Acad Sci U S A2011;108:6543-8

[63]

Peeters A,Dirkx R.Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1α independent proliferation.Biochim Biophys Acta2015;1853:285-98

[64]

Dirkx R,Martens K.Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities.Hepatology2005;41:868-78

[65]

Ong G.Unfolding the interactions between endoplasmic reticulum stress and oxidative stress.Antioxidants2023;12:981 PMCID:PMC10215201

[66]

Colpman P,Archer SL.The role of mitochondrial dynamics and mitotic fission in regulating the cell cycle in cancer and pulmonary arterial hypertension: implications for dynamin-related protein 1 and mitofusin2 in hyperproliferative diseases.Cells2023;12:1897 PMCID:PMC10378656

[67]

Piamsiri C,Pamarthi SH.Potential roles of IP3 receptors and calcium in programmed cell death and implications in cardiovascular diseases.Biomolecules2024;14:1334 PMCID:PMC11506173

[68]

Chen Y,Zhang L.Mitochondria-associated endoplasmic reticulum membrane (MAM) is a promising signature to predict prognosis and therapies for hepatocellular carcinoma (HCC).J Clin Med2023;12:1830 PMCID:PMC10003122

[69]

Alekos NS,Kim SP.Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation.JCI Insight2023;8

[70]

Gómez-Virgilio L,Flores-Morelos DS.Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators.Cells2022;11:2262 PMCID:PMC9329718

[71]

Steck TL.Is reverse cholesterol transport regulated by active cholesterol?.J Lipid Res2023;64:100385 PMCID:PMC10279919

[72]

Wanders RJ,Ferdinandusse S.Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum.Front Cell Dev Biol2015;3:83 PMCID:PMC4729952

[73]

Prasad S,Menge S.Gut redox and microbiome: charting the roadmap to T-cell regulation.Front Immunol2024;15:1387903 PMCID:PMC11371728

[74]

Schrader M,Islinger M.Organelle interplay-peroxisome interactions in health and disease.J Inherit Metab Dis2020;43:71-89

[75]

Mielecki J,Karpiński S.Retrograde signaling: understanding the communication between organelles.Int J Mol Sci2020;21:6173 PMCID:PMC7503960

[76]

Yapici NB,Yan X.Novel dual-organelle-targeting probe (RCPP) for simultaneous measurement of organellar acidity and alkalinity in living cells.ACS Omega2021;6:31447-56 PMCID:PMC8637586

[77]

Chen FW,Calvo R.Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction.iScience2022;25:104941 PMCID:PMC9440283

[78]

Spampanato C,Li L.Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease.EMBO Mol Med2013;5:691-706 PMCID:PMC3662313

[79]

Gatto F,Tarallo A.AAV-mediated transcription factor EB (TFEB) gene delivery ameliorates muscle pathology and function in the murine model of Pompe disease.Sci Rep2017;7:15089 PMCID:PMC5678083

[80]

Chaudhuri TK.Protein-misfolding diseases and chaperone-based therapeutic approaches.FEBS J2006;273:1331-49

[81]

Kaur S,Mastana SS.Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson’s disease.Life Sci2023;330:121995

[82]

Morató L,Boada J.Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy.Cell Death Differ2015;22:1742-53 PMCID:PMC4648322

[83]

English K.HDAC6: A Key Link between mitochondria and development of peripheral neuropathy.Front Mol Neurosci2021;14:684714 PMCID:PMC8438325

[84]

Baarine M,Singh A.ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy.J Neurochem2015;133:380-96 PMCID:PMC4397157

[85]

Terluk MR,Sahasrabudhe SA.Nervonic acid attenuates accumulation of very long-chain fatty acids and is a potential therapy for adrenoleukodystrophy.Neurotherapeutics2022;19:1007-17 PMCID:PMC9294126

[86]

Aihaiti M,Liu Y.Nervonic acid reduces the cognitive and neurological disturbances induced by combined doses of D-galactose/AlCl3 in mice.Food Sci Nutr2023;11:5989-98

[87]

Wang X,Mao Y.Nervonic acid improves liver inflammation in a mouse model of Parkinson’s disease by inhibiting proinflammatory signaling pathways and regulating metabolic pathways.Phytomedicine2023;117:154911

[88]

Mantle D.Mitochondrial dysfunction and neurodegenerative disorders: role of nutritional supplementation.Int J Mol Sci2022;23:12603 PMCID:PMC9604531

[89]

Fourcade S,Parameswaran J.High-dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy.Brain Pathol2020;30:945-63

[90]

Casasnovas C,Schlüter A.Biomarker identification, safety, and efficacy of high-dose antioxidants for adrenomyeloneuropathy: a phase II pilot study.Neurotherapeutics2019;16:1167-82 PMCID:PMC6985062

[91]

Van Haren KP,Awani A.A phase 1 study of oral vitamin D3 in boys and young men with X-linked adrenoleukodystrophy.Neurol Genet2023;9:e200061

[92]

Hernández-Camacho JD,López-Lluch G.Coenzyme Q10 supplementation in aging and disease.Front Physiol2018;9:44 PMCID:PMC5807419

[93]

McGarry A,Kieburtz K.Huntington study group 2CARE investigators and coordinatorsA randomized, double-blind, placebo-controlled trial of coenzyme Q10 in huntington disease.Neurology2017;88:152-9

[94]

Kartha RV,Terluk M.Preliminary N-acetylcysteine results for LDN 6722 - Role of oxidative stress and inflammation in Gaucher disease type 1: potential use of antioxidant anti-inflammatory medications.Mol Genet Metab2019;126:S82

[95]

Martakis K,Gascon-Bayari J.Efficacy and safety of N-acetyl-L-leucine in children and adults with GM2 gangliosidoses.Neurology2023;100:e1072-83

AI Summary AI Mindmap
PDF

486

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/