The necessity for skeletal muscle contractile assays to assess treatment efficacy in DMD

Claire Yuan , Amanda Sweeten , Robert W. Grange

Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (1) : 5

PDF
Rare Disease and Orphan Drugs Journal ›› 2025, Vol. 4 ›› Issue (1) :5 DOI: 10.20517/rdodj.2024.34
Review

The necessity for skeletal muscle contractile assays to assess treatment efficacy in DMD

Author information +
History +
PDF

Abstract

Body movement relies on skeletal muscles generating power to move limbs effectively. Power is defined as force multiplied by velocity: a muscle produces force at a specific velocity (the speed of muscle shortening) and this results in power. In diseases like Duchenne Muscular Dystrophy (DMD), the absence of dystrophin weakens muscles and impairs their shortening velocity, leading to decreased power and consequently, impaired movement. Additionally, the diaphragm and heart muscles are also affected in DMD, causing difficulty breathing and impaired cardiac function. Compromised cardiorespiratory function can ultimately lead to death. Given the complex etiology of DMD and the essential role of power in all affected muscles, it is crucial to assess potential treatments for their effectiveness in improving muscle function. This review focuses on fundamental physiological assays used to evaluate muscle function in skeletal and diaphragm muscles. Common assays include force-frequency, force-velocity, power, and eccentric protocols, which are conducted ex vivo, in situ, and in vivo in small rodents (such as mice and rats) and larger intermediate animal models such as the Golden Retriever Muscular Dystrophy dog. Existing data support the use of skeletal muscle contractile assays as objective tools for assessing the efficacy of treatments.

Keywords

Dystrophic muscle / contraction / ex vivo / in situ / in vivo

Cite this article

Download citation ▾
Claire Yuan, Amanda Sweeten, Robert W. Grange. The necessity for skeletal muscle contractile assays to assess treatment efficacy in DMD. Rare Disease and Orphan Drugs Journal, 2025, 4(1): 5 DOI:10.20517/rdodj.2024.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roberts TC,Davies KE.Therapeutic approaches for Duchenne muscular dystrophy.Nat Rev Drug Discov2023;22:917-34

[2]

Duan D,Takeda S,Aartsma-Rus A.Duchenne muscular dystrophy.Nat Rev Dis Primers2021;7:13 PMCID:PMC10557455

[3]

Birnkrant DJ,Butterfield RJ.Cardiorespiratory management of Duchenne muscular dystrophy: emerging therapies, neuromuscular genetics, and new clinical challenges.Lancet Respir Med2022;10:403-20

[4]

Evans WJ,Butterfield RJ.Reductions in functional muscle mass and ability to ambulate in Duchenne muscular dystrophy from ages 4 to 24 years.J Physiol2024;602:4929-39

[5]

Himič V.Evaluating the potential of novel genetic approaches for the treatment of Duchenne muscular dystrophy.Eur J Hum Genet2021;29:1369-76 PMCID:PMC8440545

[6]

Verhaart IEC.Therapeutic developments for Duchenne muscular dystrophy.Nat Rev Neurol2019;15:373-86

[7]

Duchateau J.Distribution of motor unit properties across human muscles.J Appl Physiol2022;132:1-13

[8]

Mukund K.Skeletal muscle: A review of molecular structure and function, in health and disease.Wiley Interdiscip Rev Syst Biol Med2020;12:e1462 PMCID:PMC6916202

[9]

Irving M.Regulation of contraction by the thick filaments in skeletal muscle.Biophys J2017;113:2579-94 PMCID:PMC5770512

[10]

Glancy B.Energy metabolism design of the striated muscle cell.Physiol Rev2021;101:1561-607 PMCID:PMC8576364

[11]

Sica RE.The neural hypothesis of muscular dystrophy-a review of recent experimental evidence with particular reference to the Duchenne form.Can J Neurol Sci1978;5:189-97

[12]

Bateson DS.Motor units in a fast-twitch muscle of normal and dystrophic mice.J Physiol1983;345:515-23

[13]

Fujimoto T,Tonosaki M.Characterization of dystrophin Dp71 expression and interaction partners in embryonic brain development: implications for duchenne/becker muscular dystrophy.Mol Neurobiol2025:1-17

[14]

Ng SY.Recent insights into neuromuscular junction biology in Duchenne muscular dystrophy: impacts, challenges, and opportunities.EBioMedicine2020;61:103032 PMCID:PMC7648118

[15]

Lovering RM,Edwards B.Alterations of neuromuscular junctions in Duchenne muscular dystrophy.Neurosci Lett2020;737:135304 PMCID:PMC7541569

[16]

Ganassi M.Involvement of muscle satellite cell dysfunction in neuromuscular disorders: expanding the portfolio of satellite cell-opathies.Eur J Transl Myol2022;32 PMCID:PMC8992676

[17]

Mareedu S,Duan D.Abnormal calcium handling in Duchenne muscular dystrophy: mechanisms and potential therapies.Front Physiol2021;12:647010 PMCID:PMC8063049

[18]

Gaglianone RB,Bloise FF.Reduced mitochondrial respiration and increased calcium deposits in the EDL muscle, but not in soleus, from 12-week-old dystrophic mdx mice.Sci Rep2019;9:1986 PMCID:PMC6374364

[19]

Hamm SE,Bukovec KE.Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice.Mol Ther Methods Clin Dev2021;21:144-60 PMCID:PMC8020351

[20]

Winter D.Biomechanics and motor control of human movement. 4th ed. John Wiley and Sons; 2009. p. 384.

[21]

Fitts RH,Schluter JM.The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern.J Biomech1991;24:111-22

[22]

Kornegay JN,Bogan DJ.The paradox of muscle hypertrophy in muscular dystrophy.Phys Med Rehabil Clin N Am2012;23:149-72 PMCID:PMC5951392

[23]

Ramli AA,Berndt K.Gait characterization in Duchenne muscular dystrophy (DMD) using a single-sensor accelerometer: classical machine learning and deep learning approaches.Sensors2024;24:1123 PMCID:PMC10892016

[24]

Gaudreault N,Nadeau S,Gagnon D.Gait patterns comparison of children with Duchenne muscular dystrophy to those of control subjects considering the effect of gait velocity.Gait Posture2010;32:342-7

[25]

Lott DJ,Senesac CR.Walking activity in a large cohort of boys with Duchenne muscular dystrophy.Muscle Nerve2021;63:192-8

[26]

Nair KS,Forbes SC.Step activity monitoring in boys with Duchenne muscular dystrophy and its correlation with magnetic resonance measures and functional performance.J Neuromuscul Dis2022;9:423-36 PMCID:PMC9257666

[27]

McDonald CM,Abresch RT.PTC124-GD-007-DMD study groupThe 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study.Muscle Nerve2013;48:343-56

[28]

Pascual-Morena C,Martínez-García I,Patiño-Cardona S.Efficacy and safety of vamorolone in Duchenne muscular dystrophy: a systematic review.Paediatr Drugs2024;26:695-707

[29]

Muntoni F,Sajeev G.PRO-DMD-01 study investigatorsAssociation Française contre les MyopathiesUK NorthStar Clinical NetworkImagingDMD investigatorscTAPMeaningful changes in motor function in Duchenne muscular dystrophy (DMD): a multi-center study.PLoS One2024;19:e0304984 PMCID:PMC11236155

[30]

Blaauw B,Toniolo L.Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy.J Appl Physiol2010;108:105-11

[31]

Baumann CW,Lowe DA.Mechanisms of weakness in Mdx muscle following in vivo eccentric contractions.J Muscle Res Cell Motil2022;43:63-72

[32]

Tegeler CJ,Bogan DJ.Eccentric contractions induce rapid isometric torque drop in dystrophin-deficient dogs.Muscle Nerve2010;42:130-2

[33]

Hu X,Grabowski AM,Blemker SS.Muscle eccentric contractions increase in downhill and high-grade uphill walking.Front Bioeng Biotechnol2020;8:573666 PMCID:PMC7591807

[34]

Hu X.Musculoskeletal simulation can help explain selective muscle degeneration in Duchenne muscular dystrophy.Muscle Nerve2015;52:174-82

[35]

Sperringer JE.In vitro assays to determine skeletal muscle physiologic function. In: Kyba M, editor. Skeletal muscle regeneration in the mouse. New York: Springer; 2016. pp. 271-91.

[36]

Kornegay JN,Bogan DJ.Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies.Mamm Genome2012;23:85-108 PMCID:PMC3911884

[37]

Birch SM,Conlon TJ.Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy.Sci Transl Med2023;15:eabo1815

[38]

Kodippili K,Burke MJ.SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model.Mol Ther Methods Clin Dev2024;32:101268 PMCID:PMC11190715

[39]

Childers MK,Kornegay JN.In vivo canine muscle function assay.J Vis Exp2011:2623 PMCID:PMC3169272

[40]

Childers MK,Bogan DJ.Eccentric contraction injury in dystrophic canine muscle.Arch Phys Med Rehabil2002;83:1572-78

[41]

Kiriaev L,Lindsay A.Eccentric contraction-induced strength loss in dystrophin-deficient muscle: preparations, protocols, and mechanisms.J Gen Physiol2023;155 PMCID:PMC9856740

[42]

Maxwell MN,Valverde-Pérez E,Murphy BT.Chronic N-acetyl cysteine treatment does not improve respiratory system performance in the mdx mouse model of Duchenne muscular dystrophy.Exp Physiol2024;109:1370-84

[43]

Russell AJ,Barthel B.Modulating fast skeletal muscle contraction protects skeletal muscle in animal models of Duchenne muscular dystrophy.J Clin Invest2023;133 PMCID:PMC10178848

[44]

Hamm SE,McQueen LF.Prolonged voluntary wheel running reveals unique adaptations in mdx mice treated with microdystrophin constructs ± the nNOS-binding site.Front Physiol2023;14:1166206 PMCID:PMC10330712

[45]

García-Castañeda M,Zhao N,Dirksen RT.Postdevelopmental knockout of orai1 improves muscle pathology in a mouse model of Duchenne muscular dystrophy.J Gen Physiol2022;154 PMCID:PMC9365874

[46]

Lindsay A,Verma M,Lowe DA.Isometric resistance training increases strength and alters histopathology of dystrophin-deficient mouse skeletal muscle.J Appl Physiol2019;126:363-75 PMCID:PMC6397410

[47]

Addinsall AB,McRae NL.Treatment of dystrophic mdx mice with an ADAMTS-5 specific monoclonal antibody increases the ex vivo strength of isolated fast twitch hindlimb muscles.Biomolecules2020;10:416 PMCID:PMC7175239

[48]

Ramos JN,Bengtsson NE,Hauschka SD.Development of novel micro-dystrophins with enhanced functionality.Mol Ther2019;27:623-35 PMCID:PMC6403485

[49]

Monceau A,Lemaitre M.Dystrophin restoration after adeno-associated virus U7-mediated dmd exon skipping is modulated by muscular exercise in the severe D2-mdx Duchenne muscular dystrophy murine model.Am J Pathol2022;192:1604-18

[50]

Hakim CH,Burke MJ.Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber-type switch in Duchenne muscular dystrophy dogs.Dis Model Mech2021;14 PMCID:PMC8688408

[51]

Riddell DO,Harron RCM.Longitudinal assessment of skeletal muscle functional mechanics in the DE50-MD dog model of Duchenne muscular dystrophy.Dis Model Mech2023;16:dmm050395 PMCID:PMC10753191

[52]

Bukovec KE,Borkowski M,Blemker SS.A novel ex vivo protocol to mimic human walking gait: implications for Duchenne muscular dystrophy.J Appl Physiol2020;129:779-91 PMCID:PMC7654698

[53]

Benemei S,Boni L.“If you cannot measure it, you cannot improve it”. Outcome measures in Duchenne muscular dystrophy: current and future perspectives.Acta Neurol Belg2024;

AI Summary AI Mindmap
PDF

198

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/