First, do no harm: the role of preclinical animal models in predicting adverse events in gene therapy clinical trials for Duchenne muscular dystrophy and X-Linked myotubular myopathy

Joe N. Kornegay , Hansell H. Stedman , Michael W. Lawlor , Barry J. Byrne , Martin K. (Casey) Childers

Rare Disease and Orphan Drugs Journal ›› 2024, Vol. 3 ›› Issue (4) : 31

PDF
Rare Disease and Orphan Drugs Journal ›› 2024, Vol. 3 ›› Issue (4) :31 DOI: 10.20517/rdodj.2024.28
Review

First, do no harm: the role of preclinical animal models in predicting adverse events in gene therapy clinical trials for Duchenne muscular dystrophy and X-Linked myotubular myopathy

Author information +
History +
PDF

Abstract

The occurrence of severe adverse events (SAEs) in patients with Duchenne muscular dystrophy (DMD), X-linked myotubular myopathy (XLMTM), and other neuromuscular diseases treated with adeno-associated virus (AAV) constructs has prompted studies to improve the safety and efficacy of gene therapy. Physicians have weighed the medical tenet of “first, do no harm” against the perspective of patients with progressive life-threatening conditions who may accept greater risk. Regarding SAE pathogenesis, discussion has focused on total AAV exposure and patient mutations more likely to induce immunity, while stressing the limitations of animal models in predicting adverse events. Therapeutic strategies for reducing side effects have employed more myotropic AAV serotypes and efficient transgenes. Other recommendations include excluding certain DMD gene mutations associated with SAEs and substituting less immunogenic transgenes such as utrophin (DMD) and myotubularin-related protein (XLMTM). For the sake of preclinical studies, emphasis has been placed on outbred rodents and larger animals that better predict immunity. Here, the absence of side effects in canine DMD and XLMTM models might be explained partly by phenotypic differences between affected humans and dogs. Specifically, dystrophin- and myotubularin-deficient dogs exhibit milder lesions, including less muscle fat deposition and the absence of hepatopathy, respectively, which could lead to reduced immune responses to AAV constructs. To better predict future problems, thought should be given to tracking early subclinical markers of the innate immune response, especially complement activation. Regardless of steps taken to improve the predictive value of animal models for SAEs, some questions will only be answered through human clinical trials after carefully considering the risk-benefit ratio.

Keywords

Duchenne muscular dystrophy / X-linked myotubular myopathy / animal models / severe adverse events (SAEs)

Cite this article

Download citation ▾
Joe N. Kornegay, Hansell H. Stedman, Michael W. Lawlor, Barry J. Byrne, Martin K. (Casey) Childers. First, do no harm: the role of preclinical animal models in predicting adverse events in gene therapy clinical trials for Duchenne muscular dystrophy and X-Linked myotubular myopathy. Rare Disease and Orphan Drugs Journal, 2024, 3(4): 31 DOI:10.20517/rdodj.2024.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X,Zhang Z,Liu B.Viral vector-based gene therapy.Int J Mol Sci2023;24:7736 PMCID:PMC10177981

[2]

Ertl HCJ.Immunogenicity and toxicity of AAV gene therapy.Front Immunol2022;13:975803 PMCID:PMC9411526

[3]

Mendell JR,Rodino-Klapac LR.Current clinical applications of in vivo gene therapy with AAVs.Mol Ther2020;29:464-88 PMCID:PMC7854298

[4]

Lek A,Hesterlee SE,Bönnemann CG.Meeting report: 2022 muscular dystrophy association summit on 'safety and challenges in gene transfer therapy’.J Neuromuscul Dis2023;10:327-36

[5]

Lek A,Lin B.Meeting report: 2023 muscular dystrophy association summit on ‘safety and challenges in gene therapy of neuromuscular diseases’.J Neuromuscul Dis2024;11:1139-60

[6]

Servais L,Saade D,Muntoni F.261st ENMC workshop study group261st ENMC international workshop: management of safety issues arising following AAV gene therapy.Neuromuscul Disord2023;33:884-96

[7]

Food and Drug Administration (FDA). Cellular, tissue, and gene therapies advisory committee (CTGTAC) meeting. Available from: https://www.federalregister.gov/documents/2021/07/26/2021-15783/cellular-tissue-and-gene-therapies-advisory-committee-notice-of-meeting-establishment-of-a-public [Last accessed on 14 Oct 2024]

[8]

Horton RH,Markati T.A systematic review of adeno-associated virus gene therapies in neurology: the need for consistent safety monitoring of a promising treatment.J Neurol Neurosurg Psychiatry2022;93:1276-88

[9]

Chand DH,Arya K.Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series.J Pediat231:265-8

[10]

Askitopoulou H.The relevance of the Hippocratic Oath to the ethical and moral values of contemporary medicine. Part I: the hippocratic oath from antiquity to modern times.Eur Spine J2018;27:1481-90

[11]

Askitopoulou H.The relevance of the hippocratic oath to the ethical and moral values of contemporary medicine. Part II: interpretation of the hippocratic oath-today's perspective.Eur Spine J2018;27:1491-500

[12]

Smith CM.Origin and uses of primum non nocere - above all, do no harm!.J Clin Pharmacol2005;45:371-7

[13]

Sioutis S,Bekos A.The hippocratic oath: analysis and contemporary meaning.Orthopedics2021;44:264-72

[14]

Ogunbanjo GA.The hippocratic oath: revisited.SA FAM PRAct2009;51:30-31

[15]

Kane HL,Squiers LB,McCormack LA.Implementing and evaluating shared decision making in oncology practice.CA Cancer J Clin2014;64:377-88

[16]

Zhang M,Wu J.Differences between physician and patient preferences for cancer treatments: a systematic review.BMC Cancer2023;23:1126 PMCID:PMC10657542

[17]

Schuster ALR,Fischer R,Bridges JFP.Unmet therapeutic needs of non-ambulatory patients with Duchenne muscular dystrophy: a mixed-method analysis.Ther Innov Regul Sci2022;56:572-86 PMCID:PMC8943787

[18]

Golli T,Sejersen T.The role of ataluren in the treatment of ambulatory and non-ambulatory children with nonsense mutation Duchenne muscular dystrophy - a consensus derived using a modified Delphi methodology in Eastern Europe, Greece, Israel and Sweden.BMC Neurol2024;24:73 PMCID:PMC10880248

[19]

Stedman HH.Signs of progress in gene therapy for muscular dystrophy also warrant caution.Mol Ther2012;20:249-51 PMCID:PMC3277231

[20]

Nichols TC,Arruda VR.Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs.Hum Gene Ther Clin Dev2015;26:5-14 PMCID:PMC4442577

[21]

Byrne BJ,Smith BK.Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy.Ann Transl Med2019;7:290 PMCID:PMC6642929

[22]

Birch SM,Conlon TJ.Assessment of systemic AAV-microdystrophin gene therapy in the GRMD model of Duchenne muscular dystrophy.Sci Transl Med2023;15:eabo1815

[23]

Yue Y,Hakim CH.Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.Hum Mol Genet2015;15:5880-90 PMCID:PMC4581611

[24]

Le Guiner C,Montus M.Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy.Nat Commun2017;8:16105 PMCID:PMC5537486

[25]

Mack DL,Goddard MA.Systemic AAV8-Mediated gene therapy drives whole-body correction of myotubular myopathy in dogs.Mol Ther2017;25:839-54

[26]

Shieh PB,Dowling JJ.Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): a multinational, open-label, dose-escalation trial.Lancet Neurol2023;22:1125-39

[27]

Beggs AH,Snead E.MTM1 mutation associated with X-linked myotubular myopathy in Labrador Retrievers.Natl Acad Sci U S A2010;107:14697-702 PMCID:PMC2930454

[28]

Lawlor MW,Buj-Bello A.Skeletal muscle pathology in X-linked myotubular myopathy: review with cross-species comparisons.J Neuropathol Exp Neurol2016;75:102-10 PMCID:PMC4765322

[29]

Lawlor MW,Margeta M.Effects of gene replacement therapy with resamirigene bilparvovec (AT132) on skeletal muscle pathology in X-linked myotubular myopathy: results from a substudy of the ASPIRO open-label clinical trial.EBioMedicine2024;99:104894 PMCID:PMC10758703

[30]

Boehler JF,Beatka M.Clinical potential of microdystrophin as a surrogate endpoint.Neuromuscul Disord2023;33:40-9

[31]

Bönnemann CG,Braun S,Singh T.Dystrophin immunity after gene therapy for Duchenne's muscular dystrophy.N Engl J Med2023;388:2294-6

[32]

Zaiss AK,White LR.Complement is an essential component of the immune response to adeno-associated virus vectors.J Virol2008;82:2727-40 PMCID:PMC2259003

[33]

Salabarria SM,Coleman KE.Thrombotic microangiopathy following systemic AAV administration is dependent on anti-capsid antibodies.J Clin Invest202;134:e173510 PMCID:PMC10760971

[34]

Chowdary P,Makris M.Phase 1-2 trial of AAVS3 gene therapy in patients with hemophilia B.N Engl J Med2022;387:237-47

[35]

Sobh M,Ghiasi M.Safety and efficacy of adeno-associated viral gene therapy in patients with retinal degeneration: a systematic review and meta-analysis.Transl Vis Sci Technol2023;12:24 PMCID:PMC10668613

[36]

High KA.Theodore E. Woodward Award. AAV-mediated gene transfer for hemophilia.Trans Am Clin Climatol Assoc2003;114:337-51

[37]

Nichols TC,Agersø H,Lillicrap D.Canine models of inherited bleeding disorders in the development of coagulation assays, novel protein replacement and gene therapies.J Thromb Haemost2016;14:894-905

[38]

Nguyen GN,Kafle S.A long-term study of AAV gene therapy in dogs with hemophilia a identifies clonal expansions of transduced liver cells.Nat Biotechnol2021;39:47-55 PMCID:PMC7855056

[39]

Ellinwood NM,Desmaris N.Safe, efficient, and reproducible gene therapy of the brain in the dog models of Sanfilippo and Hurler syndromes.Mol Ther2011;19:251-9 PMCID:PMC3034858

[40]

Bradbury AM,Casal ML.A review of gene therapy in canine and feline models of lysosomal storage disorders.Hum Gene Ther Clin Dev2015;26:27-37 PMCID:PMC4516914

[41]

Hordeaux J,Jian J.Efficacy and safety of a Krabbe disease gene therapy.Hum Gene Ther2022;33:499-517 PMCID:PMC9142772

[42]

Narfström K,Bragadottir R.Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog.Invest Ophthalmol Vis Sci2003;44:1663-72

[43]

Aguirre GD,Dufour VL.Gene therapy reforms photoreceptor structure and restores vision in NPHP5-associated Leber congenital amaurosis.Mol Ther2021;29:2456-68 PMCID:PMC8353203

[44]

Takahashi K,Sato Y,Miyadera K.Extended functional rescue following AAV gene therapy in a canine model of LRIT3-congenital stationary night blindness.Vision Res2023;209:108260 PMCID:PMC10524691

[45]

Hamilton BA.Challenges posed by immune responses to AAV vectors: addressing root causes.Front Immunol2021;12:675897 PMCID:PMC8168460

[46]

Yang TY,Lembke W.Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper.Mol Ther Methods Clin Dev2022;26:471-94 PMCID:PMC9418752

[47]

Kishimoto TK.Addressing high dose AAV toxicity - 'one and done' or 'slower and lower'?.Expert Opin Biol Ther2022;22:1067-71

[48]

Mendell JR,Rodino-Klapac L.Dystrophin immunity in Duchenne's muscular dystrophy.N Engl J Med2010;363:1429-37 PMCID:PMC3014106

[49]

Lehman AJ,Davidow B. Procedures for the appraisal of the toxicity of chemicals in foods, drugs and cosmetics. Available from: https://www.jstor.org/stable/26655418 [Last accessed on 14 Oct 2024]

[50]

Jacobs AC.History of chronic toxicity and animal carcinogenicity studies for pharmaceuticals.Vet Pathol2013;50:324-33

[51]

Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?.JACC Basic Transl Sci2019;5:845-54 PMCID:PMC6978558

[52]

Han JJ.FDA Modernization act 2. 0 allows for alternatives to animal testing.Artif Organs2023;47:449-50

[53]

Wadman M.FDA no longer has to require animal testing for new drugs.Science2023;379:127-28.

[54]

Norman GA. Limitations of animal studies for predicting toxicity in clinical trials: part 2: potential alternatives to the use of animals in preclinical trials.JACC Basic Transl Sci2020;5:387-97 PMCID:PMC7185927

[55]

Gopinath C,Ghosh A,Nelson EJR.Contemporary animal models for human gene therapy applications.Curr Gene Ther2015;15:531-40 PMCID:PMC7709571

[56]

FDA. Guidance for industry preclinical assessment of investigational cellular and gene therapy products. Available from: https://www.federalregister.gov/documents/2013/11/25/2013-28173/guidance-for-industry-preclinical-assessment-of-investigational-cellular-and-gene-therapy-products [Last accessed on 14 Oct 2024]

[57]

Bailey AM,Au P.An FDA perspective on preclinical development of cell-based regenerative medicine products.Nat Biotechnol2014;32:721-3

[58]

Bailey AM,Benton KA,Winitsky S.United States Food and Drug Administration regulation of gene and cell therapies.Adv Exp Med Biol2015;871:1-29

[59]

Brinks V,Schellekens H.Immunogenicity of therapeutic proteins: the use of animal models.Pharm Res2011;28:2379-85 PMCID:PMC3170476

[60]

Enriquez J,Trasti S,Grisham MB.Genomic, microbial and environmental standardization in animal experimentation limiting immunological discovery.BMC Immunol2020;21:50 PMCID:PMC7464063

[61]

Casal M.Large animal models and gene therapy.Eur J Hum Genet2006;14:266-72

[62]

Kiani AK,Henehan G.Ethical considerations regarding animal experimentation. J Prev Med Hyg 2022;63:E255-66. PMCID:PMC4494423

[63]

Ziegler A,Blikslager A.Large animal models: the key to translational discovery in digestive disease research.Cell Mol Gastroenterol Hepatol2016;2:716-24 PMCID:PMC5235339

[64]

Oh JH.Comparative oncology: overcoming human cancer through companion animal studies.Exp Mol Med2023;55:725-34 PMCID:PMC10167357

[65]

Steenbeek FG, Hytönen MK, Leegwater PA, Lohi H. The canine era: the rise of a biomedical model.Anim Genet2016;47:519-27

[66]

Story BD,Bradbury AM.Canine models of inherited musculoskeletal and neurodegenerative diseases.Front Vet Sci2020;7:80 PMCID:PMC7078110

[67]

Kornegay JN,Bogan DJ.Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies.Mamm Genome2012;23:85-108 PMCID:PMC3911884

[68]

Barthélémy I,Tiret L.The dog model in the spotlight: legacy of a trustful cooperation.J Neuromuscul Dis2019;6:421-51 PMCID:PMC6918919

[69]

Doshi BS,Nichols TC.AAV gene therapy in companion dogs with severe hemophilia: real-world long-term data on immunogenicity, efficacy, and quality of life.Mol Ther Methods Clin Dev2024;32:101205 PMCID:PMC10875295

[70]

Gareau A,Warry E.Allogeneic peripheral blood haematopoietic stem cell transplantation for the treatment of dogs with high-grade B-cell lymphoma.Vet Comp Oncol2022;20:862-70 PMCID:PMC9796125

[71]

Shin JH,Smith B.Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs.Hum Gene Ther2012;23:287-94 PMCID:PMC3300072

[72]

Calcedo R,Qin Q.Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies.Hum Gene Ther Methods2015;26:103-5 PMCID:PMC4492586

[73]

Goggs R.C1 inhibitor in canine intravascular hemolysis (C1INCH): study protocol for a randomized controlled trial.BMC Vet Res2019;15:475 PMCID:PMC6937664

[74]

Szebeni J,Rosivall L.Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles.J Liposome Res2007;17:107-17

[75]

Kornegay JN,Bogan DJ.NBD delivery improves the disease phenotype of the golden retriever model of Duchenne muscular dystrophy.Skelet Muscle2014;4:18 PMCID:PMC4364341

[76]

Wang B,Xiao X.Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model.Proc Natl Acad Sci U S A2000;97:13714-9 PMCID:PMC17641

[77]

Harper SQ,DelloRusso C.Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy.Nat Med2002;8:253-61

[78]

Wang Z,Chamberlain JS.Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials.Front Microbiol2011;2:201 PMCID:PMC3180173

[79]

Wang Z,Riddell SR.Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy.Hum Gene Ther2007;18:18-26

[80]

Yuasa K,Urasawa N.Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products.Gene Ther2007;14:1249-60

[81]

Kornegay JN,Bogan JR.Widespread muscle expression of an AAV9 human mini-dystrophin vector after intravenous injection in neonatal dystrophin-deficient dogs.Mol Ther2010;18:1501-8 PMCID:PMC2927072

[82]

Li J,Bogan J. Efficient long-term bodywide expression of an AAV9-minidystrophin in the muscle and heart of young adult GRMD dogs after intravascular injection without immune suppression. Available from: https://www.cell.com/molecular-therapy-family/molecular-therapy/pdf/S1525-0016(16)36624-2.pdf [Last accessed on 14 Oct 2024]

[83]

Wang Z,Allen JM.Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression.Mol Ther2007;15:1160-6

[84]

Koo T,Athanasopoulos T.Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog.J Gene Med2011;13:497-506

[85]

Bowles DE,Li C.Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector.Mol Ther2012;20:443-55 PMCID:PMC3277234

[86]

Ketonis C,Liss F.Pain management strategies in hand surgery.Orthop Clin North Am2015;46:399-408

[87]

Hagstrom JE,Zhang G.A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs.Mol Ther2004;10:386-98

[88]

Arruda VR,Haurigot V.Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B.Blood2010;115:4678-88 PMCID:PMC2890180

[89]

Ohshima S,Yuasa K.Transduction efficiency and immune response associated with the administration of AAV8 vector into dog skeletal muscle.Mol Ther2009;17:73-80 PMCID:PMC2834993

[90]

Fan Z,Valley R.High-pressure transvenous perfusion of the upper extremity in human muscular dystrophy: a safety study with 0. 9% saline.Hum Gene Ther2015;26:614-21 PMCID:PMC4575535

[91]

Wang B,Fu FH.Systemic human minidystrophin gene transfer improves functions and life span of dystrophin and dystrophin/utrophin- deficient mice.J Orthop Res2009;27:421-26

[92]

Gregorevic P,Allen JM.Systemic microdystrophin gene delivery improves skeletal muscle structure and function in old dystrophic mdx mice.Mol Ther2008;16:657-64 PMCID:PMC2650831

[93]

Chen Y,Kang Y.Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.Hum Mol Genet2015;24:3764-74 PMCID:PMC5007610

[94]

Lim KRQ,Dzierlega K,Yokota T.CRISPR-generated animal models of Duchenne muscular dystrophy.Genes (Basel)2020;11:342 PMCID:PMC7141101

[95]

Ren S,Guo W.Profound cellular defects attribute to muscular pathogenesis in the rhesus monkey model of Duchenne muscular dystrophy.Cell2024;S0092-8674(24)00970

[96]

Rodino-Klapac LR,Montgomery CL.A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy.J Transl Med2007;5:45 PMCID:PMC2082019

[97]

Potter RA,Griffin D.Use of plasmapheresis to lower anti-AAV antibodies in nonhuman primates with pre-existing immunity to AAVrh74.Mol Ther Methods Clin Dev2024;32:101195 PMCID:PMC10847772

[98]

Hinderer C,Buza EL.Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN.Hum Gene Ther2018;29:285-98 PMCID:PMC5865262

[99]

Hordeaux J,Song C.High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury.Mol Ther2024;32:952-68 PMCID:PMC11163197

[100]

Childers MK,Poulard K.Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy.Sci Transl Med2014;6:220ra10 PMCID:PMC4105197

[101]

Graves SS.Developments and translational relevance for the canine haematopoietic cell transplantation preclinical model.Vet Comp Oncol2020;18:471-83 PMCID:PMC9044721

[102]

Lupu M.Five decades of progress in haematopoietic cell transplantation based on the preclinical canine model.Vet Comp Oncol2007;5:14-30 PMCID:PMC2752055

[103]

Graves SS.Evolution of haematopoietic cell transplantation for canine blood disorders and a platform for solid organ transplantation.Vet Med Sci2021;7:2156-71

[104]

Gussoni E,Strickland CD.Dystrophin expression in the mdx mouse restored by stem cell transplantation.Nature1999;401:390-4

[105]

Gussoni E,Muskiewicz KR.Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation.J Clin Invest2002;110:807-14

[106]

Dell’Agnola C,Storb R,Kuhr CS.Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular dystrophy dogs.Blood2004;104:4311-8

[107]

Partridge TA,Coulton GR,Kunkel LM.Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts.Nature1989;337:176-9

[108]

Tremblay JP,Roy R.Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy.Cell Transplant1993;2:99-112

[109]

Miller RG,Pavlath GK.Myoblast transplantation in Duchenne muscular dystrophy: the San Francisco study.Muscle Nerve1997;20:469-78

[110]

Prattis SM,Van Camp SD.Immunohistochemical detection of neural cell adhesion molecule and laminin in X-linked dystrophic dogs and mdx mice.J Comp Pathol1994;110:253-66

[111]

Kornegay JN,Bogan DJ. Results of myoblast transplantation in a canine model of muscle injury. In: Kakulas BA, Mc HJ, Roses AD, editors. Duchenne muscular dystrophy: animal models and genetic manipulation. San Diego: Raven; 1992. p. 203-12. Available from: https://www.cambridge.org/core/journals/canadian-journal-of-neurological-sciences/article/duchenne-muscular-dystrophy-animal-models-and-genetic-manipulation-1992-edited-by-kakulasba-howellj-and-rosesad-published-by-raven-press-308-pages-108-cdn-approx/DB5C25B79AE3ECFAD1A8C9136074E489 [Last accessed on 14 Oct 2024]

[112]

Partridge T.Myoblast transplantation.Neuromuscul Disord2002;12:3-6

[113]

Smythe GM,Grounds MD.Problems and solutions in myoblast transfer therapy.J Cell Mol Med2001;5:33-47 PMCID:PMC6737837

[114]

Skuk D,Goulet M.Ischemic central necrosis in pockets of transplanted myoblasts in nonhuman primates: implications for cell-transplantation strategies.Transplantation2007;84:1307-15

[115]

Sharp NJ,Van Camp SD.An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy.Genomics1992;13:115-21

[116]

Schatzberg SJ,Wilton SD.Alternative dystrophin gene transcripts in golden retriever muscular dystrophy.Muscle Nerve1998;21:991-8

[117]

VanBelzen DJ,Henthorn PS,Stedman HH.Mechanism of deletion removing all dystrophin exons in a canine model for DMD implicates concerted evolution of X chromosome pseudogenes.Mol Ther Methods Clin Dev2016;4:62-71 PMCID:PMC5363321

[118]

Song Y,Malik AS.Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models.Nat Med2019;25:1505-11

[119]

Laporte J,Tanner SM.MTM1 mutations in X-linked myotubular myopathy.Hum Mutat2000;15:393-409

[120]

Kušíková K,Ficek A.Prognostic value of genotype-phenotype correlations in X-Linked myotubular myopathy and the use of the Face2Gene application as an effective non-invasive diagnostic tool.Genes (Basel)2023;14:2174 PMCID:PMC10742680

[121]

Dowling JJ,Das S.X-Linked myotubular myopathy. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews.Seattle2002;25:1993-2024

[122]

Raess MA,Bertazzi DL.Expression of the neuropathy-associated MTMR2 gene rescues MTM1-associated myopathy.Hum Mol Genet2017;26:3736-48

[123]

Danièle N,Julien L.Intravenous administration of a MTMR2-encoding AAV vector ameliorates the phenotype of myotubular myopathy in mice.J Neuropathol Exp Neurol2018;77:282-95 PMCID:PMC5939852

[124]

National Research Council. Models for biomedical research: a new perspective. Washington DC: The National Academy Press; 1985. Available from: https://nap.nationalacademies.org/catalog/19304/models-for-biomedical-research-a-new-perspective [Last accessed on 14 Oct 2024]

[125]

Kornegay JN.Canine inherited dystrophinopathies and centronuclear myopathies. In: Childers MK, editor. Regenerative medicine for degenerative muscle diseases. New York: Humana Press; 2016. p. 309-29.

[126]

Patronek GJ,Glickman LT.Comparative longevity of pet dogs and humans: implications for gerontology research.J Gerontol A Biol Sci Med Sci1997;52:B171-8

[127]

Kornegay JN.The golden retriever model of Duchenne muscular dystrophy.Skelet Muscle2017;7:9 PMCID:PMC5438519

[128]

Tulangekar A.Inflammation in duchenne muscular dystrophy-exploring the role of neutrophils in muscle damage and regeneration.Biomedicines2021;9:1366 PMCID:PMC8533596

[129]

Tripodi L,Molinaro D,Farini A.The immune system in Duchenne muscular dystrophy pathogenesis.Biomedicines2021;9:1447 PMCID:PMC8533196

[130]

Valentine BA,Cummings JF.Canine X-linked muscular dystrophy: morphologic lesions.J Neurol Sci1990;97:1-23

[131]

Kakulas BA. Diseases of muscle: pathological foundations of clinical Myology. 4th ed. Philadelphia: Harper & Row Publishers; 1985. p. 389-402. Available from: https://cir.nii.ac.jp/crid/1130000796164051200 [Last accessed on 14 Oct 2024]

[132]

Fan Z,Ahn M.Characteristics of magnetic resonance imaging biomarkers in a natural history study of golden retriever muscular dystrophy.Neuromuscul Disord2014;24:178-91 PMCID:PMC4065593

[133]

Kim HK,Shiraj S.Analysis of fatty infiltration and inflammation of the pelvic and thigh muscles in boys with Duchenne muscular dystrophy (DMD): grading of disease involvement on MR imaging and correlation with clinical assessments.Pediatr Radiol2013;43:1327-35

[134]

Shinohara I,Mifune Y.Influence of adiponectin and inflammatory cytokines in fatty degenerative atrophic muscle.Sci Rep2022;12:1557 PMCID:PMC8799651

[135]

Clemente-Suárez VJ,Beltrán-Velasco AI.The role of adipokines in health and disease.Biomedicines2023;11:1290 PMCID:PMC10216288

[136]

Snead EC,van der Kooij M.Clinical phenotype of X-linked myotubular myopathy in Labrador Retriever puppies.J Vet Intern Med2015;29:254-60 PMCID:PMC4308540

[137]

Jungbluth H,Laporte J.Centronuclear (myotubular) myopathy.Orphanet J Rare Dis200;3:26 PMCID:PMC2572588

[138]

D'Amico A,Fattori F.Hepatobiliary disease in XLMTM: a common comorbidity with potential impact on treatment strategies.Orphanet J Rare Dis2021;16:425 PMCID:PMC8513353

[139]

Karolczak S,Aristegui E.Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy.J Clin Invest2023;133:e166275 PMCID:PMC10503795

[140]

Molera C,Nascimento A.Intrahepatic cholestasis is a clinically significant feature associated with natural history of X-Linked myotubular myopathy (XLMTM): a case series and biopsy report.J Neuromuscul Dis2022;9:73-82 PMCID:PMC8842755

[141]

Kodippili K,Burke MJ.SERCA2a overexpression improves muscle function in a canine Duchenne muscular dystrophy model.Mol Ther Methods Clin Dev2024;32:101268 PMCID:PMC11190715

[142]

Bradbury AM,Swain G.Combination HSCT and intravenous AAV-mediated gene therapy in a canine model proves pivotal for translation of Krabbe disease therapy.Mol Ther2024;32:44-58 PMCID:PMC10787152

[143]

Franco-Martínez L,Tvarijonaviciute A.Serum proteome of dogs at subclinical and clinical onset of canine leishmaniosis.Transbound Emerg Dis2020;67:318-27

[144]

Ramos JN,Bengtsson NE,Hauschka SD.Development of novel micro-dystrophins with enhanced functionality.Mol Ther2019;27:623-35 PMCID:PMC6403485

[145]

Salva MZ,Tai PW.Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle.Mol Ther2007;15:320-9

[146]

Hakim CH,Pan X.et al.Mol Ther Methods Clin Dev2017;6:216-30 PMCID:PMC5596503

[147]

Kobayashi YM,Crawford RW.Sarcolemma-localized nNOS is required to maintain activity after mild exercise.Nature2008;456:511-5 PMCID:PMC2588643

[148]

Gentil C,Ben Yaou R.Variable phenotype of del45-55 Becker patients correlated with nNOSμ mislocalization and RYR1 hypernitrosylation.Hum Mol Genet2012;21:3449-60

[149]

Duan DD.Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy.Mol Ther2018;26:2337-56 PMCID:PMC6171037

[150]

Elangkovan N.Gene therapy for Duchenne muscular dystrophy.J Neuromuscul Dis2021;8:S303-16 PMCID:PMC8673537

[151]

Wang B,Qiao C.A canine minidystrophin is functional and therapeutic in mdx mice.Gene Ther2008;15:1099-106

[152]

Wang B,Fu FH.Construction and analysis of compact muscle-specific promoters for AAV vectors.Gene Ther2008;15:1489-99

[153]

Kim S,Qiao C.A novel AAV8-based gene therapy for Duchenne muscular dystrophy: preclinical studies in the mdx mouse.Neuromuscul Disord2021;31:S76

[154]

Srivastava A.Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy.Mol Ther Nucleic Acids2023;32:949-59 PMCID:PMC10244667

[155]

Weinmann J,Sippel J.Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants.Nat Commun2020;11:5432 PMCID:PMC7595228

[156]

El Andari J,Tulalamba W.Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders.Sci Adv2022;8:eabn4704 PMCID:PMC9491714

[157]

Tabebordbar M,Stanton A.Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species.Cell2021;184:4919-38 PMCID:PMC9344975

[158]

Ji J,Laporte J.Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors.Skelet Muscle2024;14:9 PMCID:PMC11067285

[159]

Shoti J,Keeler GD,Byrne BJ.Development of capsid- and genome-modified optimized AAVrh74 vectors for muscle gene therapy.Mol Ther Methods Clin Dev2023;31:101147 PMCID:PMC10690633

[160]

Goedeker NL,Griffin DA.Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy.Ther Adv Neurol Disord2023;16:17562864221149781 PMCID:PMC9880577

[161]

Mendell JR,Zaidman CM.Practical considerations for delandistrogene moxeparvovec gene therapy in patients with Duchenne muscular dystrophy.Pediatr Neurol2024;153:11-18

[162]

Gonzalez TJ,Blondel LO.Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing.Nat Commun2022;13:5947 PMCID:PMC9548504

[163]

Lu Y,Shoti J.Enhanced transgene expression from single-stranded AAV vectors in human cells in vitro and in murine hepatocytes in vivo.Mol Ther Nucleic Acids2024;35:102196 PMCID:PMC11101737

[164]

Szwec S,Chamberlain JS.Dystrophin- and utrophin-based therapeutic approaches for treatment of Duchenne muscular dystrophy: a comparative review.BioDrugs2024;38:95-119 PMCID:PMC10789850

[165]

Martino AT.Immune response mechanisms against AAV vectors in animal models.Mol Ther Methods Clin Dev2019;17:198-208 PMCID:PMC6965504

[166]

Bhattacharyya M,Miller AL.The FDA approval of delandistrogene moxeparvovec-rokl for Duchenne muscular dystrophy: a critical examination of the evidence and regulatory process.Expert Opin Biol Ther2024;20:1-3

[167]

REGENXBIO. REGENXBIO presents interim clinical data from Phase I/II AFFINITY DUCHENNE™ Trial of RGX-202 at 28th Annual International Congress of the World Muscle Society. Available from: https://www.prnewswire.com/news-releases/regenxbio-presents-interim-clinical-data-from-phase-iii-affinity-duchenne-trial-of-rgx-202-at-28th-annual-international-congress-of-the-world-muscle-society-301946289.html [Last accessed on 14 Oct 2024]

[168]

Veerapandiyan A,Dastgir J.RGX-202, an investigational gene therapy for the treatment of Duchenne muscular dystrophy: Interim clinical data (S21. 005).Neurology2024;102:1

[169]

Liang L, Sulaiman N, Yazid MD. A decade of progress in gene targeted therapeutic strategies in Duchenne muscular dystrophy: a systematic review..Front Bioeng Biotechnol2022;10:833833 PMCID:PMC8984139

[170]

Manini A,Nuredini A,Comi GP.Adeno-associated virus (AAV)-mediated gene therapy for Duchenne muscular dystrophy: the issue of transgene persistence.Front Neurol2022;12:814174 PMCID:PMC8797140

[171]

Chamberlain JS,Braun S.Microdystrophin expression as a surrogate endpoint for Duchenne muscular dystrophy clinical trials.Hum Gene Ther2023;34:404-15 PMCID:PMC10210223

[172]

Hart CC,Xie J.Potential limitations of microdystrophin gene therapy for Duchenne muscular dystrophy.JCI Insight2024;9:e165869 PMCID:PMC11382885

[173]

Sun C,Zhang Z.Therapeutic strategies for Duchenne muscular dystrophy: an update.Genes (Basel)2020;11:837 PMCID:PMC7463903

[174]

D'Ambrosio ES.Evolving therapeutic options for the treatment of Duchenne muscular dystrophy.Neurotherapeutics2023;20:1669-81 PMCID:PMC10684843

[175]

Rawls A,Smith CI,Acosta SA.Pharmacotherapeutic approaches to treatment of muscular dystrophies.Biomolecules2023;13:1536 PMCID:PMC10605463

[176]

Mendell JR,McDonald CM.Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy.Front Cell Dev Biol2023;11:1167762 PMCID:PMC10366687

[177]

Dreghici R,Lawredne J.IGNITE DMD phase I/II Study of SGT-001 microdystrophin gene therapy for DMD: 2-year outcomes update.MDA Clinical and Scientific Conference2024;

[178]

Pfizer press release. Pfizer provides update on Phase 3 study of investigational gene therapy for ambulatory boys with Duchenne muscular dystrophy. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provides-update-phase-3-study-investigational-gene [Last accessed on 14 Oct 2024]

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/